⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 chdtr.c

📁 linux下用PCMCIA无线网卡虚拟无线AP的程序源码
💻 C
字号:
/*							chdtr.c * *	Chi-square distribution * * * * SYNOPSIS: * * double df, x, y, chdtr(); * * y = chdtr( df, x ); * * * * DESCRIPTION: * * Returns the area under the left hand tail (from 0 to x) * of the Chi square probability density function with * v degrees of freedom. * * *                                  inf. *                                    - *                        1          | |  v/2-1  -t/2 *  P( x | v )   =   -----------     |   t      e     dt *                    v/2  -       | | *                   2    | (v/2)   - *                                   x * * where x is the Chi-square variable. * * The incomplete gamma integral is used, according to the * formula * *	y = chdtr( v, x ) = igam( v/2.0, x/2.0 ). * * * The arguments must both be positive. * * * * ACCURACY: * * See igam(). * * ERROR MESSAGES: * *   message         condition      value returned * chdtr domain   x < 0 or v < 1        0.0 *//*							chdtrc() * *	Complemented Chi-square distribution * * * * SYNOPSIS: * * double v, x, y, chdtrc(); * * y = chdtrc( v, x ); * * * * DESCRIPTION: * * Returns the area under the right hand tail (from x to * infinity) of the Chi square probability density function * with v degrees of freedom: * * *                                  inf. *                                    - *                        1          | |  v/2-1  -t/2 *  P( x | v )   =   -----------     |   t      e     dt *                    v/2  -       | | *                   2    | (v/2)   - *                                   x * * where x is the Chi-square variable. * * The incomplete gamma integral is used, according to the * formula * *	y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ). * * * The arguments must both be positive. * * * * ACCURACY: * * See igamc(). * * ERROR MESSAGES: * *   message         condition      value returned * chdtrc domain  x < 0 or v < 1        0.0 *//*							chdtri() * *	Inverse of complemented Chi-square distribution * * * * SYNOPSIS: * * double df, x, y, chdtri(); * * x = chdtri( df, y ); * * * * * DESCRIPTION: * * Finds the Chi-square argument x such that the integral * from x to infinity of the Chi-square density is equal * to the given cumulative probability y. * * This is accomplished using the inverse gamma integral * function and the relation * *    x/2 = igami( df/2, y ); * * * * * ACCURACY: * * See igami.c. * * ERROR MESSAGES: * *   message         condition      value returned * chdtri domain   y < 0 or y > 1        0.0 *                     v < 1 * *//*								chdtr() *//*Cephes Math Library Release 2.8:  June, 2000Copyright 1984, 1987, 2000 by Stephen L. Moshier*/#include <math.h>#ifdef ANSIPROTextern double igamc ( double, double );extern double igam ( double, double );extern double igami ( double, double );#elsedouble igamc(), igam(), igami();#endifdouble chdtrc(df,x)double df, x;{if( (x < 0.0) || (df < 1.0) )	{	mtherr( "chdtrc", DOMAIN );	return(0.0);	}return( igamc( df/2.0, x/2.0 ) );}double chdtr(df,x)double df, x;{if( (x < 0.0) || (df < 1.0) )	{	mtherr( "chdtr", DOMAIN );	return(0.0);	}return( igam( df/2.0, x/2.0 ) );}double chdtri( df, y )double df, y;{double x;if( (y < 0.0) || (y > 1.0) || (df < 1.0) )	{	mtherr( "chdtri", DOMAIN );	return(0.0);	}x = igami( 0.5 * df, y );return( 2.0 * x );}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -