⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 eigens.c

📁 linux下用PCMCIA无线网卡虚拟无线AP的程序源码
💻 C
字号:
/*							eigens.c * *	Eigenvalues and eigenvectors of a real symmetric matrix * * * * SYNOPSIS: * * int n; * double A[n*(n+1)/2], EV[n*n], E[n]; * void eigens( A, EV, E, n ); * * * * DESCRIPTION: * * The algorithm is due to J. vonNeumann. * * A[] is a symmetric matrix stored in lower triangular form. * That is, A[ row, column ] = A[ (row*row+row)/2 + column ] * or equivalently with row and column interchanged.  The * indices row and column run from 0 through n-1. * * EV[] is the output matrix of eigenvectors stored columnwise. * That is, the elements of each eigenvector appear in sequential * memory order.  The jth element of the ith eigenvector is * EV[ n*i+j ] = EV[i][j]. * * E[] is the output matrix of eigenvalues.  The ith element * of E corresponds to the ith eigenvector (the ith row of EV). * * On output, the matrix A will have been diagonalized and its * orginal contents are destroyed. * * ACCURACY: * * The error is controlled by an internal parameter called RANGE * which is set to 1e-10.  After diagonalization, the * off-diagonal elements of A will have been reduced by * this factor. * * ERROR MESSAGES: * * None. * */#include <math.h>#ifdef ANSIPROTextern double sqrt ( double );extern double fabs ( double );#elsedouble sqrt(), fabs();#endifvoid eigens( A, RR, E, N )double A[], RR[], E[];int N;{int IND, L, LL, LM, M, MM, MQ, I, J, IA, LQ;int IQ, IM, IL, NLI, NMI;double ANORM, ANORMX, AIA, THR, ALM, ALL, AMM, X, Y;double SINX, SINX2, COSX, COSX2, SINCS, AIL, AIM;double RLI, RMI;static double RANGE = 1.0e-10; /*3.0517578e-5;*//* Initialize identity matrix in RR[] */for( J=0; J<N*N; J++ )	RR[J] = 0.0;MM = 0;for( J=0; J<N; J++ )	{	RR[MM + J] = 1.0;	MM += N;	}ANORM=0.0;for( I=0; I<N; I++ )	{	for( J=0; J<N; J++ )		{		if( I != J )			{			IA = I + (J*J+J)/2;			AIA = A[IA];			ANORM += AIA * AIA;			}		}	}if( ANORM <= 0.0 )	goto done;ANORM = sqrt( ANORM + ANORM );ANORMX = ANORM * RANGE / N;THR = ANORM;while( THR > ANORMX ){THR=THR/N;do{ /* while IND != 0 */IND = 0;for( L=0; L<N-1; L++ )	{for( M=L+1; M<N; M++ )	{	MQ=(M*M+M)/2;	LM=L+MQ;	ALM=A[LM];	if( fabs(ALM) < THR )		continue;	IND=1;	LQ=(L*L+L)/2;	LL=L+LQ;	MM=M+MQ;	ALL=A[LL];	AMM=A[MM];	X=(ALL-AMM)/2.0;	Y=-ALM/sqrt(ALM*ALM+X*X);	if(X < 0.0)		Y=-Y;	SINX = Y / sqrt( 2.0 * (1.0 + sqrt( 1.0-Y*Y)) );	SINX2=SINX*SINX;	COSX=sqrt(1.0-SINX2);	COSX2=COSX*COSX;	SINCS=SINX*COSX;/*	   ROTATE L AND M COLUMNS */for( I=0; I<N; I++ )	{	IQ=(I*I+I)/2;	if( (I != M) && (I != L) )		{		if(I > M)			IM=M+IQ;		else			IM=I+MQ;		if(I >= L)			IL=L+IQ;		else			IL=I+LQ;		AIL=A[IL];		AIM=A[IM];		X=AIL*COSX-AIM*SINX;		A[IM]=AIL*SINX+AIM*COSX;		A[IL]=X;		}	NLI = N*L + I;	NMI = N*M + I;	RLI = RR[ NLI ];	RMI = RR[ NMI ];	RR[NLI]=RLI*COSX-RMI*SINX;	RR[NMI]=RLI*SINX+RMI*COSX;	}	X=2.0*ALM*SINCS;	A[LL]=ALL*COSX2+AMM*SINX2-X;	A[MM]=ALL*SINX2+AMM*COSX2+X;	A[LM]=(ALL-AMM)*SINCS+ALM*(COSX2-SINX2);	} /* for M=L+1 to N-1 */	} /* for L=0 to N-2 */	}while( IND != 0 );} /* while THR > ANORMX */done:	;/* Extract eigenvalues from the reduced matrix */L=0;for( J=1; J<=N; J++ )	{	L=L+J;	E[J-1]=A[L-1];	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -