⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 floorf.c

📁 linux下用PCMCIA无线网卡虚拟无线AP的程序源码
💻 C
字号:
/*							ceilf() *							floorf() *							frexpf() *							ldexpf() *							signbitf() *							isnanf() *							isfinitef() * *	Single precision floating point numeric utilities * * * * SYNOPSIS: * * float x, y; * float ceilf(), floorf(), frexpf(), ldexpf(); * int signbit(), isnan(), isfinite(); * int expnt, n; * * y = floorf(x); * y = ceilf(x); * y = frexpf( x, &expnt ); * y = ldexpf( x, n ); * n = signbit(x); * n = isnan(x); * n = isfinite(x); * * * * DESCRIPTION: * * All four routines return a single precision floating point * result. * * sfloor() returns the largest integer less than or equal to x. * It truncates toward minus infinity. * * sceil() returns the smallest integer greater than or equal * to x.  It truncates toward plus infinity. * * sfrexp() extracts the exponent from x.  It returns an integer * power of two to expnt and the significand between 0.5 and 1 * to y.  Thus  x = y * 2**expn. * * ldexpf() multiplies x by 2**n. * * signbit(x) returns 1 if the sign bit of x is 1, else 0. * * These functions are part of the standard C run time library * for many but not all C compilers.  The ones supplied are * written in C for either DEC or IEEE arithmetic.  They should * be used only if your compiler library does not already have * them. * * The IEEE versions assume that denormal numbers are implemented * in the arithmetic.  Some modifications will be required if * the arithmetic has abrupt rather than gradual underflow. *//*Cephes Math Library Release 2.1:  December, 1988Copyright 1984, 1987, 1988 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>#ifdef DEC#undef DENORMAL#define DENORMAL 0#endif#ifdef UNK#undef UNK#if BIGENDIAN#define MIEEE 1#else#define IBMPC 1#endif/*char *unkmsg = "ceil(), floor(), frexp(), ldexp() must be rewritten!\n";*/#endif#define EXPMSK 0x807f#define MEXP 255#define NBITS 24extern float MAXNUMF; /* (2^24 - 1) * 2^103 */#ifdef ANSICfloat floorf(float);#elsefloat floorf();#endiffloat ceilf( float x ){float y;#ifdef UNKprintf( "%s\n", unkmsg );return(0.0);#endify = floorf( (float )x );if( y < x )	y += 1.0;return(y);}/* Bit clearing masks: */static unsigned short bmask[] = {0xffff,0xfffe,0xfffc,0xfff8,0xfff0,0xffe0,0xffc0,0xff80,0xff00,0xfe00,0xfc00,0xf800,0xf000,0xe000,0xc000,0x8000,0x0000,};float floorf( float x ){unsigned short *p;union  {    float y;    unsigned short i[2];  } u;int e;#ifdef UNKprintf( "%s\n", unkmsg );return(0.0);#endifu.y = x;/* find the exponent (power of 2) */#ifdef DECp = &u.i[0];e = (( *p  >> 7) & 0377) - 0201;p += 3;#endif#ifdef IBMPCp = &u.i[1];e = (( *p >> 7) & 0xff) - 0x7f;p -= 1;#endif#ifdef MIEEEp = &u.i[0];e = (( *p >> 7) & 0xff) - 0x7f;p += 1;#endifif( e < 0 )	{	if( u.y < 0 )		return( -1.0 );	else		return( 0.0 );	}e = (NBITS -1) - e;/* clean out 16 bits at a time */while( e >= 16 )	{#ifdef IBMPC	*p++ = 0;#endif#ifdef DEC	*p-- = 0;#endif#ifdef MIEEE	*p-- = 0;#endif	e -= 16;	}/* clear the remaining bits */if( e > 0 )	*p &= bmask[e];if( (x < 0) && (u.y != x) )	u.y -= 1.0;return(u.y);}float frexpf( float x, int *pw2 ){union  {    float y;    unsigned short i[2];  } u;int i, k;short *q;u.y = x;#ifdef UNKprintf( "%s\n", unkmsg );return(0.0);#endif#ifdef IBMPCq = &u.i[1];#endif#ifdef DECq = &u.i[0];#endif#ifdef MIEEEq = &u.i[0];#endif/* find the exponent (power of 2) */i  = ( *q >> 7) & 0xff;if( i == 0 )	{	if( u.y == 0.0 )		{		*pw2 = 0;		return(0.0);		}/* Number is denormal or zero */#if DENORMAL/* Handle denormal number. */	do		{		u.y *= 2.0;		i -= 1;		k  = ( *q >> 7) & 0xff;		}	while( k == 0 );	i = i + k;#else	*pw2 = 0;	return( 0.0 );#endif /* DENORMAL */	}i -= 0x7e;*pw2 = i;*q &= 0x807f;	/* strip all exponent bits */*q |= 0x3f00;	/* mantissa between 0.5 and 1 */return( u.y );}float ldexpf( float x, int pw2 ){union  {    float y;    unsigned short i[2];  } u;short *q;int e;#ifdef UNKprintf( "%s\n", unkmsg );return(0.0);#endifu.y = x;#ifdef DECq = &u.i[0];#endif#ifdef IBMPCq = &u.i[1];#endif#ifdef MIEEEq = &u.i[0];#endifwhile( (e = ( *q >> 7) & 0xff) == 0 )	{	if( u.y == (float )0.0 )		{		return( 0.0 );		}/* Input is denormal. */	if( pw2 > 0 )		{		u.y *= 2.0;		pw2 -= 1;		}	if( pw2 < 0 )		{		if( pw2 < -24 )			return( 0.0 );		u.y *= 0.5;		pw2 += 1;		}	if( pw2 == 0 )		return(u.y);	}e += pw2;/* Handle overflow */if( e > MEXP )	{	return( MAXNUMF );	}*q &= 0x807f;/* Handle denormalized results */if( e < 1 )	{#if DENORMAL	if( e < -24 )		return( 0.0 );	*q |= 0x80; /* Set LSB of exponent. */	/* For denormals, significant bits may be lost even	   when dividing by 2.  Construct 2^-(1-e) so the result	   is obtained with only one multiplication.  */	u.y *= ldexpf(1.0f, e - 1);	return(u.y);#else	return( 0.0 );#endif	}*q |= (e & 0xff) << 7;return(u.y);}/* Return 1 if the sign bit of x is 1, else 0.  */int signbitf(x)float x;{union	{	float f;	short s[4];	int i;	} u;u.f = x;if( sizeof(int) == 4 )	{#ifdef IBMPC	return( u.i < 0 );#endif#ifdef DEC	return( u.s[1] < 0 );#endif#ifdef MIEEE	return( u.i < 0 );#endif	}else	{#ifdef IBMPC	return( u.s[1] < 0 );#endif#ifdef DEC	return( u.s[1] < 0 );#endif#ifdef MIEEE	return( u.s[0] < 0 );#endif	}}/* Return 1 if x is a number that is Not a Number, else return 0.  */int isnanf(x)float x;{#ifdef NANSunion	{	float f;	unsigned short s[2];	unsigned int i;	} u;u.f = x;if( sizeof(int) == 4 )	{#ifdef IBMPC	if( ((u.i & 0x7f800000) == 0x7f800000)	    && ((u.i & 0x007fffff) != 0) )		return 1;#endif#ifdef DEC	if( (u.s[1] & 0x7f80) == 0)		{		if( (u.s[1] | u.s[0]) != 0 )			return(1);		}#endif#ifdef MIEEE	if( ((u.i & 0x7f800000) == 0x7f800000)	    && ((u.i & 0x007fffff) != 0) )		return 1;#endif	return(0);	}else	{ /* size int not 4 */#ifdef IBMPC	if( (u.s[1] & 0x7f80) == 0x7f80)		{		if( ((u.s[1] & 0x007f) | u.s[0]) != 0 )			return(1);		}#endif#ifdef DEC	if( (u.s[1] & 0x7f80) == 0)		{		if( (u.s[1] | u.s[0]) != 0 )			return(1);		}#endif#ifdef MIEEE	if( (u.s[0] & 0x7f80) == 0x7f80)		{		if( ((u.s[0] & 0x000f) | u.s[1]) != 0 )			return(1);		}#endif	return(0);	} /* size int not 4 */#else/* No NANS.  */return(0);#endif}/* Return 1 if x is not infinite and is not a NaN.  */int isfinitef(x)float x;{#ifdef INFINITIESunion	{	float f;	unsigned short s[2];	unsigned int i;	} u;u.f = x;if( sizeof(int) == 4 )	{#ifdef IBMPC	if( (u.i & 0x7f800000) != 0x7f800000)		return 1;#endif#ifdef DEC	if( (u.s[1] & 0x7f80) == 0)		{		if( (u.s[1] | u.s[0]) != 0 )			return(1);		}#endif#ifdef MIEEE	if( (u.i & 0x7f800000) != 0x7f800000)		return 1;#endif	return(0);	}else	{#ifdef IBMPC	if( (u.s[1] & 0x7f80) != 0x7f80)		return 1;#endif#ifdef DEC	if( (u.s[1] & 0x7f80) == 0)		{		if( (u.s[1] | u.s[0]) != 0 )			return(1);		}#endif#ifdef MIEEE	if( (u.s[0] & 0x7f80) != 0x7f80)		return 1;#endif	return(0);	}#else/* No INFINITY.  */return(1);#endif}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -