📄 bdtrf.c
字号:
/* bdtrf.c * * Binomial distribution * * * * SYNOPSIS: * * int k, n; * float p, y, bdtrf(); * * y = bdtrf( k, n, p ); * * * * DESCRIPTION: * * Returns the sum of the terms 0 through k of the Binomial * probability density: * * k * -- ( n ) j n-j * > ( ) p (1-p) * -- ( j ) * j=0 * * The terms are not summed directly; instead the incomplete * beta integral is employed, according to the formula * * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ). * * The arguments must be positive, with p ranging from 0 to 1. * * * * ACCURACY: * * Relative error (p varies from 0 to 1): * arithmetic domain # trials peak rms * IEEE 0,100 2000 6.9e-5 1.1e-5 * * ERROR MESSAGES: * * message condition value returned * bdtrf domain k < 0 0.0 * n < k * x < 0, x > 1 * *//* bdtrcf() * * Complemented binomial distribution * * * * SYNOPSIS: * * int k, n; * float p, y, bdtrcf(); * * y = bdtrcf( k, n, p ); * * * * DESCRIPTION: * * Returns the sum of the terms k+1 through n of the Binomial * probability density: * * n * -- ( n ) j n-j * > ( ) p (1-p) * -- ( j ) * j=k+1 * * The terms are not summed directly; instead the incomplete * beta integral is employed, according to the formula * * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ). * * The arguments must be positive, with p ranging from 0 to 1. * * * * ACCURACY: * * Relative error (p varies from 0 to 1): * arithmetic domain # trials peak rms * IEEE 0,100 2000 6.0e-5 1.2e-5 * * ERROR MESSAGES: * * message condition value returned * bdtrcf domain x<0, x>1, n<k 0.0 *//* bdtrif() * * Inverse binomial distribution * * * * SYNOPSIS: * * int k, n; * float p, y, bdtrif(); * * p = bdtrf( k, n, y ); * * * * DESCRIPTION: * * Finds the event probability p such that the sum of the * terms 0 through k of the Binomial probability density * is equal to the given cumulative probability y. * * This is accomplished using the inverse beta integral * function and the relation * * 1 - p = incbi( n-k, k+1, y ). * * * * * ACCURACY: * * Relative error (p varies from 0 to 1): * arithmetic domain # trials peak rms * IEEE 0,100 2000 3.5e-5 3.3e-6 * * ERROR MESSAGES: * * message condition value returned * bdtrif domain k < 0, n <= k 0.0 * x < 0, x > 1 * *//* bdtr() *//*Cephes Math Library Release 2.2: July, 1992Copyright 1984, 1987, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>#ifdef ANSICfloat incbetf(float, float, float), powf(float, float);float incbif( float, float, float );#elsefloat incbetf(), powf(), incbif();#endiffloat bdtrcf( int k, int n, float pp ){float p, dk, dn;p = pp;if( (p < 0.0) || (p > 1.0) ) goto domerr;if( k < 0 ) return( 1.0 );if( n < k ) {domerr: mtherr( "bdtrcf", DOMAIN ); return( 0.0 ); }if( k == n ) return( 0.0 );dn = n - k;if( k == 0 ) { dk = 1.0 - powf( 1.0-p, dn ); }else { dk = k + 1; dk = incbetf( dk, dn, p ); }return( dk );}float bdtrf( int k, int n, float pp ){float p, dk, dn;p = pp;if( (p < 0.0) || (p > 1.0) ) goto domerr;if( (k < 0) || (n < k) ) {domerr: mtherr( "bdtrf", DOMAIN ); return( 0.0 ); }if( k == n ) return( 1.0 );dn = n - k;if( k == 0 ) { dk = powf( 1.0-p, dn ); }else { dk = k + 1; dk = incbetf( dn, dk, 1.0 - p ); }return( dk );}float bdtrif( int k, int n, float yy ){float y, dk, dn, p;y = yy;if( (y < 0.0) || (y > 1.0) ) goto domerr;if( (k < 0) || (n <= k) ) {domerr: mtherr( "bdtrif", DOMAIN ); return( 0.0 ); }dn = n - k;if( k == 0 ) { p = 1.0 - powf( y, 1.0/dn ); }else { dk = k + 1; p = 1.0 - incbif( dn, dk, y ); }return( p );}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -