⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bdtrf.c

📁 linux下用PCMCIA无线网卡虚拟无线AP的程序源码
💻 C
字号:
/*							bdtrf.c * *	Binomial distribution * * * * SYNOPSIS: * * int k, n; * float p, y, bdtrf(); * * y = bdtrf( k, n, p ); * * * * DESCRIPTION: * * Returns the sum of the terms 0 through k of the Binomial * probability density: * *   k *   --  ( n )   j      n-j *   >   (   )  p  (1-p) *   --  ( j ) *  j=0 * * The terms are not summed directly; instead the incomplete * beta integral is employed, according to the formula * * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ). * * The arguments must be positive, with p ranging from 0 to 1. * * * * ACCURACY: * *        Relative error (p varies from 0 to 1): * arithmetic   domain     # trials      peak         rms *    IEEE       0,100       2000       6.9e-5      1.1e-5 * * ERROR MESSAGES: * *   message         condition      value returned * bdtrf domain        k < 0            0.0 *                     n < k *                     x < 0, x > 1 * *//*							bdtrcf() * *	Complemented binomial distribution * * * * SYNOPSIS: * * int k, n; * float p, y, bdtrcf(); * * y = bdtrcf( k, n, p ); * * * * DESCRIPTION: * * Returns the sum of the terms k+1 through n of the Binomial * probability density: * *   n *   --  ( n )   j      n-j *   >   (   )  p  (1-p) *   --  ( j ) *  j=k+1 * * The terms are not summed directly; instead the incomplete * beta integral is employed, according to the formula * * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ). * * The arguments must be positive, with p ranging from 0 to 1. * * * * ACCURACY: * *        Relative error (p varies from 0 to 1): * arithmetic   domain     # trials      peak         rms *    IEEE       0,100       2000       6.0e-5      1.2e-5 * * ERROR MESSAGES: * *   message         condition      value returned * bdtrcf domain     x<0, x>1, n<k       0.0 *//*							bdtrif() * *	Inverse binomial distribution * * * * SYNOPSIS: * * int k, n; * float p, y, bdtrif(); * * p = bdtrf( k, n, y ); * * * * DESCRIPTION: * * Finds the event probability p such that the sum of the * terms 0 through k of the Binomial probability density * is equal to the given cumulative probability y. * * This is accomplished using the inverse beta integral * function and the relation * * 1 - p = incbi( n-k, k+1, y ). * * * * * ACCURACY: * *        Relative error (p varies from 0 to 1): * arithmetic   domain     # trials      peak         rms *    IEEE       0,100       2000       3.5e-5      3.3e-6 * * ERROR MESSAGES: * *   message         condition      value returned * bdtrif domain    k < 0, n <= k         0.0 *                  x < 0, x > 1 * *//*								bdtr() *//*Cephes Math Library Release 2.2:  July, 1992Copyright 1984, 1987, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>#ifdef ANSICfloat incbetf(float, float, float), powf(float, float);float incbif( float, float, float );#elsefloat incbetf(), powf(), incbif();#endiffloat bdtrcf( int k, int n, float pp ){float p, dk, dn;p = pp;if( (p < 0.0) || (p > 1.0) )	goto domerr;if( k < 0 )	return( 1.0 );if( n < k )	{domerr:	mtherr( "bdtrcf", DOMAIN );	return( 0.0 );	}if( k == n )	return( 0.0 );dn = n - k;if( k == 0 )	{	dk = 1.0 - powf( 1.0-p, dn );	}else	{	dk = k + 1;	dk = incbetf( dk, dn, p );	}return( dk );}float bdtrf( int k, int n, float pp ){float p, dk, dn;p = pp;if( (p < 0.0) || (p > 1.0) )	goto domerr;if( (k < 0) || (n < k) )	{domerr:	mtherr( "bdtrf", DOMAIN );	return( 0.0 );	}if( k == n )	return( 1.0 );dn = n - k;if( k == 0 )	{	dk = powf( 1.0-p, dn );	}else	{	dk = k + 1;	dk = incbetf( dn, dk, 1.0 - p );	}return( dk );}float bdtrif( int k, int n, float yy ){float y, dk, dn, p;y = yy;if( (y < 0.0) || (y > 1.0) )	goto domerr;if( (k < 0) || (n <= k) )	{domerr:	mtherr( "bdtrif", DOMAIN );	return( 0.0 );	}dn = n - k;if( k == 0 )	{	p = 1.0 - powf( y, 1.0/dn );	}else	{	dk = k + 1;	p = 1.0 - incbif( dn, dk, y );	}return( p );}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -