⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 clogf.c

📁 linux下用PCMCIA无线网卡虚拟无线AP的程序源码
💻 C
字号:
/*							clogf.c * *	Complex natural logarithm * * * * SYNOPSIS: * * void clogf(); * cmplxf z, w; * * clogf( &z, &w ); * * * * DESCRIPTION: * * Returns complex logarithm to the base e (2.718...) of * the complex argument x. * * If z = x + iy, r = sqrt( x**2 + y**2 ), * then *       w = log(r) + i arctan(y/x). *  * The arctangent ranges from -PI to +PI. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       1.9e-6       6.2e-8 * * Larger relative error can be observed for z near 1 +i0. * In IEEE arithmetic the peak absolute error is 3.1e-7. * */#include <math.h>extern float MAXNUMF, MACHEPF, PIF, PIO2F;#ifdef ANSICfloat cabsf(cmplxf *), sqrtf(float), logf(float), atan2f(float, float);float expf(float), sinf(float), cosf(float);float coshf(float), sinhf(float), asinf(float);float ctansf(cmplxf *), redupif(float);void cchshf( float, float *, float * );void caddf( cmplxf *, cmplxf *, cmplxf * );void csqrtf( cmplxf *, cmplxf * );#elsefloat cabsf(), sqrtf(), logf(), atan2f();float expf(), sinf(), cosf();float coshf(), sinhf(), asinf();float ctansf(), redupif();void cchshf(), csqrtf(), caddf();#endif#define fabsf(x) ( (x) < 0 ? -(x) : (x) )void clogf( z, w )register cmplxf *z, *w;{float p, rr;/*rr = sqrtf( z->r * z->r  +  z->i * z->i );*/rr = cabsf(z);p = logf(rr);#if ANSICrr = atan2f( z->i, z->r );#elserr = atan2f( z->r, z->i );if( rr > PIF )	rr -= PIF + PIF;#endifw->i = rr;w->r = p;}/*							cexpf() * *	Complex exponential function * * * * SYNOPSIS: * * void cexpf(); * cmplxf z, w; * * cexpf( &z, &w ); * * * * DESCRIPTION: * * Returns the exponential of the complex argument z * into the complex result w. * * If *     z = x + iy, *     r = exp(x), * * then * *     w = r cos y + i r sin y. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       1.4e-7      4.5e-8 * */void cexpf( z, w )register cmplxf *z, *w;{float r;r = expf( z->r );w->r = r * cosf( z->i );w->i = r * sinf( z->i );}/*							csinf() * *	Complex circular sine * * * * SYNOPSIS: * * void csinf(); * cmplxf z, w; * * csinf( &z, &w ); * * * * DESCRIPTION: * * If *     z = x + iy, * * then * *     w = sin x  cosh y  +  i cos x sinh y. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       1.9e-7      5.5e-8 * */void csinf( z, w )register cmplxf *z, *w;{float ch, sh;cchshf( z->i, &ch, &sh );w->r = sinf( z->r ) * ch;w->i = cosf( z->r ) * sh;}/* calculate cosh and sinh */void cchshf( float xx, float *c, float *s ){float x, e, ei;x = xx;if( fabsf(x) <= 0.5f )	{	*c = coshf(x);	*s = sinhf(x);	}else	{	e = expf(x);	ei = 0.5f/e;	e = 0.5f * e;	*s = e - ei;	*c = e + ei;	}}/*							ccosf() * *	Complex circular cosine * * * * SYNOPSIS: * * void ccosf(); * cmplxf z, w; * * ccosf( &z, &w ); * * * * DESCRIPTION: * * If *     z = x + iy, * * then * *     w = cos x  cosh y  -  i sin x sinh y. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       1.8e-7       5.5e-8 */void ccosf( z, w )register cmplxf *z, *w;{float ch, sh;cchshf( z->i, &ch, &sh );w->r = cosf( z->r ) * ch;w->i = -sinf( z->r ) * sh;}/*							ctanf() * *	Complex circular tangent * * * * SYNOPSIS: * * void ctanf(); * cmplxf z, w; * * ctanf( &z, &w ); * * * * DESCRIPTION: * * If *     z = x + iy, * * then * *           sin 2x  +  i sinh 2y *     w  =  --------------------. *            cos 2x  +  cosh 2y * * On the real axis the denominator is zero at odd multiples * of PI/2.  The denominator is evaluated by its Taylor * series near these points. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       3.3e-7       5.1e-8 */void ctanf( z, w )register cmplxf *z, *w;{float d;d = cosf( 2.0f * z->r ) + coshf( 2.0f * z->i );if( fabsf(d) < 0.25f )	d = ctansf(z);if( d == 0.0f )	{	mtherr( "ctanf", OVERFLOW );	w->r = MAXNUMF;	w->i = MAXNUMF;	return;	}w->r = sinf( 2.0f * z->r ) / d;w->i = sinhf( 2.0f * z->i ) / d;}/*							ccotf() * *	Complex circular cotangent * * * * SYNOPSIS: * * void ccotf(); * cmplxf z, w; * * ccotf( &z, &w ); * * * * DESCRIPTION: * * If *     z = x + iy, * * then * *           sin 2x  -  i sinh 2y *     w  =  --------------------. *            cosh 2y  -  cos 2x * * On the real axis, the denominator has zeros at even * multiples of PI/2.  Near these points it is evaluated * by a Taylor series. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       3.6e-7       5.7e-8 * Also tested by ctan * ccot = 1 + i0. */void ccotf( z, w )register cmplxf *z, *w;{float d;d = coshf(2.0f * z->i) - cosf(2.0f * z->r);if( fabsf(d) < 0.25f )	d = ctansf(z);if( d == 0.0f )	{	mtherr( "ccotf", OVERFLOW );	w->r = MAXNUMF;	w->i = MAXNUMF;	return;	}d = 1.0f/d;w->r = sinf( 2.0f * z->r ) * d;w->i = -sinhf( 2.0f * z->i ) * d;}/* Program to subtract nearest integer multiple of PI *//* extended precision value of PI: */static float DP1 =  3.140625;static float DP2 =  9.67502593994140625E-4;static float DP3 =  1.509957990978376432E-7;float redupif(float xx){float x, t;long i;x = xx;t = x/PIF;if( t >= 0.0f )	t += 0.5f;else	t -= 0.5f;i = t;	/* the multiple */t = i;t = ((x - t * DP1) - t * DP2) - t * DP3;return(t);}/*  Taylor series expansion for cosh(2y) - cos(2x)	*/float ctansf(z)cmplxf *z;{float f, x, x2, y, y2, rn, t, d;x = fabsf( 2.0f * z->r );y = fabsf( 2.0f * z->i );x = redupif(x);x = x * x;y = y * y;x2 = 1.0f;y2 = 1.0f;f = 1.0f;rn = 0.0f;d = 0.0f;do	{	rn += 1.0f;	f *= rn;	rn += 1.0f;	f *= rn;	x2 *= x;	y2 *= y;	t = y2 + x2;	t /= f;	d += t;	rn += 1.0f;	f *= rn;	rn += 1.0f;	f *= rn;	x2 *= x;	y2 *= y;	t = y2 - x2;	t /= f;	d += t;	}while( fabsf(t/d) > MACHEPF );return(d);}/*							casinf() * *	Complex circular arc sine * * * * SYNOPSIS: * * void casinf(); * cmplxf z, w; * * casinf( &z, &w ); * * * * DESCRIPTION: * * Inverse complex sine: * *                               2 * w = -i clog( iz + csqrt( 1 - z ) ). * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       1.1e-5      1.5e-6 * Larger relative error can be observed for z near zero. * */void casinf( z, w )cmplxf *z, *w;{float x, y;static cmplxf ca, ct, zz, z2;/*float cn, n;static float a, b, s, t, u, v, y2;static cmplxf sum;*/x = z->r;y = z->i;if( y == 0.0f )	{	if( fabsf(x) > 1.0f )		{		w->r = PIO2F;		w->i = 0.0f;		mtherr( "casinf", DOMAIN );		}	else		{		w->r = asinf(x);		w->i = 0.0f;		}	return;	}/* Power series expansion *//*b = cabsf(z);if( b < 0.125 ){z2.r = (x - y) * (x + y);z2.i = 2.0 * x * y;cn = 1.0;n = 1.0;ca.r = x;ca.i = y;sum.r = x;sum.i = y;do	{	ct.r = z2.r * ca.r  -  z2.i * ca.i;	ct.i = z2.r * ca.i  +  z2.i * ca.r;	ca.r = ct.r;	ca.i = ct.i;	cn *= n;	n += 1.0;	cn /= n;	n += 1.0;	b = cn/n;	ct.r *= b;	ct.i *= b;	sum.r += ct.r;	sum.i += ct.i;	b = fabsf(ct.r) + fabsf(ct.i);	}while( b > MACHEPF );w->r = sum.r;w->i = sum.i;return;}*/ca.r = x;ca.i = y;ct.r = -ca.i;	/* iz */ct.i = ca.r;	/* sqrt( 1 - z*z) *//* cmul( &ca, &ca, &zz ) */zz.r = (ca.r - ca.i) * (ca.r + ca.i);	/*x * x  -  y * y */zz.i = 2.0f * ca.r * ca.i;zz.r = 1.0f - zz.r;zz.i = -zz.i;csqrtf( &zz, &z2 );caddf( &z2, &ct, &zz );clogf( &zz, &zz );w->r = zz.i;	/* mult by 1/i = -i */w->i = -zz.r;return;}/*							cacosf() * *	Complex circular arc cosine * * * * SYNOPSIS: * * void cacosf(); * cmplxf z, w; * * cacosf( &z, &w ); * * * * DESCRIPTION: * * * w = arccos z  =  PI/2 - arcsin z. * * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       9.2e-6       1.2e-6 * */void cacosf( z, w )cmplxf *z, *w;{casinf( z, w );w->r = PIO2F  -  w->r;w->i = -w->i;}/*							catan() * *	Complex circular arc tangent * * * * SYNOPSIS: * * void catan(); * cmplxf z, w; * * catan( &z, &w ); * * * * DESCRIPTION: * * If *     z = x + iy, * * then *          1       (    2x     ) * Re w  =  - arctan(-----------)  +  k PI *          2       (     2    2) *                  (1 - x  - y ) * *               ( 2         2) *          1    (x  +  (y+1) ) * Im w  =  - log(------------) *          4    ( 2         2) *               (x  +  (y-1) ) * * Where k is an arbitrary integer. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000        2.3e-6      5.2e-8 * */void catanf( z, w )cmplxf *z, *w;{float a, t, x, x2, y;x = z->r;y = z->i;if( (x == 0.0f) && (y > 1.0f) )	goto ovrf;x2 = x * x;a = 1.0f - x2 - (y * y);if( a == 0.0f )	goto ovrf;#if ANSICt = 0.5f * atan2f( 2.0f * x, a );#elset = 0.5f * atan2f( a, 2.0f * x );#endifw->r = redupif( t );t = y - 1.0f;a = x2 + (t * t);if( a == 0.0f )	goto ovrf;t = y + 1.0f;a = (x2 + (t * t))/a;w->i = 0.25f*logf(a);return;ovrf:mtherr( "catanf", OVERFLOW );w->r = MAXNUMF;w->i = MAXNUMF;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -