⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sinf.c

📁 linux下用PCMCIA无线网卡虚拟无线AP的程序源码
💻 C
字号:
/*							sinf.c * *	Circular sine * * * * SYNOPSIS: * * float x, y, sinf(); * * y = sinf( x ); * * * * DESCRIPTION: * * Range reduction is into intervals of pi/4.  The reduction * error is nearly eliminated by contriving an extended precision * modular arithmetic. * * Two polynomial approximating functions are employed. * Between 0 and pi/4 the sine is approximated by *      x  +  x**3 P(x**2). * Between pi/4 and pi/2 the cosine is represented as *      1  -  x**2 Q(x**2). * * * ACCURACY: * *                      Relative error: * arithmetic   domain      # trials      peak       rms *    IEEE    -4096,+4096   100,000      1.2e-7     3.0e-8 *    IEEE    -8192,+8192   100,000      3.0e-7     3.0e-8 *  * ERROR MESSAGES: * *   message           condition        value returned * sin total loss      x > 2^24              0.0 * * Partial loss of accuracy begins to occur at x = 2^13 * = 8192. Results may be meaningless for x >= 2^24 * The routine as implemented flags a TLOSS error * for x >= 2^24 and returns 0.0. *//*							cosf.c * *	Circular cosine * * * * SYNOPSIS: * * float x, y, cosf(); * * y = cosf( x ); * * * * DESCRIPTION: * * Range reduction is into intervals of pi/4.  The reduction * error is nearly eliminated by contriving an extended precision * modular arithmetic. * * Two polynomial approximating functions are employed. * Between 0 and pi/4 the cosine is approximated by *      1  -  x**2 Q(x**2). * Between pi/4 and pi/2 the sine is represented as *      x  +  x**3 P(x**2). * * * ACCURACY: * *                      Relative error: * arithmetic   domain      # trials      peak         rms *    IEEE    -8192,+8192   100,000      3.0e-7     3.0e-8 *//*Cephes Math Library Release 2.2:  June, 1992Copyright 1985, 1987, 1988, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*//* Single precision circular sine * test interval: [-pi/4, +pi/4] * trials: 10000 * peak relative error: 6.8e-8 * rms relative error: 2.6e-8 */#include <math.h>static float FOPI = 1.27323954473516;extern float PIO4F;/* Note, these constants are for a 32-bit significand: *//*static float DP1 =  0.7853851318359375;static float DP2 =  1.30315311253070831298828125e-5;static float DP3 =  3.03855025325309630e-11;static float lossth = 65536.;*//* These are for a 24-bit significand: */static float DP1 = 0.78515625;static float DP2 = 2.4187564849853515625e-4;static float DP3 = 3.77489497744594108e-8;static float lossth = 8192.;static float T24M1 = 16777215.;static float sincof[] = {-1.9515295891E-4, 8.3321608736E-3,-1.6666654611E-1};static float coscof[] = { 2.443315711809948E-005,-1.388731625493765E-003, 4.166664568298827E-002};float sinf( float xx ){float *p;float x, y, z;register unsigned long j;register int sign;sign = 1;x = xx;if( xx < 0 )	{	sign = -1;	x = -xx;	}if( x > T24M1 )	{	mtherr( "sinf", TLOSS );	return(0.0);	}j = FOPI * x; /* integer part of x/(PI/4) */y = j;/* map zeros to origin */if( j & 1 )	{	j += 1;	y += 1.0;	}j &= 7; /* octant modulo 360 degrees *//* reflect in x axis */if( j > 3)	{	sign = -sign;	j -= 4;	}if( x > lossth )	{	mtherr( "sinf", PLOSS );	x = x - y * PIO4F;	}else	{/* Extended precision modular arithmetic */	x = ((x - y * DP1) - y * DP2) - y * DP3;	}/*einits();*/z = x * x;if( (j==1) || (j==2) )	{/* measured relative error in +/- pi/4 is 7.8e-8 *//*	y = ((  2.443315711809948E-005 * z	  - 1.388731625493765E-003) * z	  + 4.166664568298827E-002) * z * z;*/	p = coscof;	y = *p++;	y = y * z + *p++;	y = y * z + *p++;	y *= z * z;	y -= 0.5 * z;	y += 1.0;	}else	{/* Theoretical relative error = 3.8e-9 in [-pi/4, +pi/4] *//*	y = ((-1.9515295891E-4 * z	     + 8.3321608736E-3) * z	     - 1.6666654611E-1) * z * x;	y += x;*/	p = sincof;	y = *p++;	y = y * z + *p++;	y = y * z + *p++;	y *= z * x;	y += x;	}/*einitd();*/if(sign < 0)	y = -y;return( y);}/* Single precision circular cosine * test interval: [-pi/4, +pi/4] * trials: 10000 * peak relative error: 8.3e-8 * rms relative error: 2.2e-8 */float cosf( float xx ){float x, y, z;int j, sign;/* make argument positive */sign = 1;x = xx;if( x < 0 )	x = -x;if( x > T24M1 )	{	mtherr( "cosf", TLOSS );	return(0.0);	}j = FOPI * x; /* integer part of x/PIO4 */y = j;/* integer and fractional part modulo one octant */if( j & 1 )	/* map zeros to origin */	{	j += 1;	y += 1.0;	}j &= 7;if( j > 3)	{	j -=4;	sign = -sign;	}if( j > 1 )	sign = -sign;if( x > lossth )	{	mtherr( "cosf", PLOSS );	x = x - y * PIO4F;	}else/* Extended precision modular arithmetic */	x = ((x - y * DP1) - y * DP2) - y * DP3;z = x * x;if( (j==1) || (j==2) )	{	y = (((-1.9515295891E-4 * z	     + 8.3321608736E-3) * z	     - 1.6666654611E-1) * z * x)	     + x;	}else	{	y = ((  2.443315711809948E-005 * z	  - 1.388731625493765E-003) * z	  + 4.166664568298827E-002) * z * z;	y -= 0.5 * z;	y += 1.0;	}if(sign < 0)	y = -y;return( y );}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -