📄 sinf.c
字号:
/* sinf.c * * Circular sine * * * * SYNOPSIS: * * float x, y, sinf(); * * y = sinf( x ); * * * * DESCRIPTION: * * Range reduction is into intervals of pi/4. The reduction * error is nearly eliminated by contriving an extended precision * modular arithmetic. * * Two polynomial approximating functions are employed. * Between 0 and pi/4 the sine is approximated by * x + x**3 P(x**2). * Between pi/4 and pi/2 the cosine is represented as * 1 - x**2 Q(x**2). * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -4096,+4096 100,000 1.2e-7 3.0e-8 * IEEE -8192,+8192 100,000 3.0e-7 3.0e-8 * * ERROR MESSAGES: * * message condition value returned * sin total loss x > 2^24 0.0 * * Partial loss of accuracy begins to occur at x = 2^13 * = 8192. Results may be meaningless for x >= 2^24 * The routine as implemented flags a TLOSS error * for x >= 2^24 and returns 0.0. *//* cosf.c * * Circular cosine * * * * SYNOPSIS: * * float x, y, cosf(); * * y = cosf( x ); * * * * DESCRIPTION: * * Range reduction is into intervals of pi/4. The reduction * error is nearly eliminated by contriving an extended precision * modular arithmetic. * * Two polynomial approximating functions are employed. * Between 0 and pi/4 the cosine is approximated by * 1 - x**2 Q(x**2). * Between pi/4 and pi/2 the sine is represented as * x + x**3 P(x**2). * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -8192,+8192 100,000 3.0e-7 3.0e-8 *//*Cephes Math Library Release 2.2: June, 1992Copyright 1985, 1987, 1988, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*//* Single precision circular sine * test interval: [-pi/4, +pi/4] * trials: 10000 * peak relative error: 6.8e-8 * rms relative error: 2.6e-8 */#include <math.h>static float FOPI = 1.27323954473516;extern float PIO4F;/* Note, these constants are for a 32-bit significand: *//*static float DP1 = 0.7853851318359375;static float DP2 = 1.30315311253070831298828125e-5;static float DP3 = 3.03855025325309630e-11;static float lossth = 65536.;*//* These are for a 24-bit significand: */static float DP1 = 0.78515625;static float DP2 = 2.4187564849853515625e-4;static float DP3 = 3.77489497744594108e-8;static float lossth = 8192.;static float T24M1 = 16777215.;static float sincof[] = {-1.9515295891E-4, 8.3321608736E-3,-1.6666654611E-1};static float coscof[] = { 2.443315711809948E-005,-1.388731625493765E-003, 4.166664568298827E-002};float sinf( float xx ){float *p;float x, y, z;register unsigned long j;register int sign;sign = 1;x = xx;if( xx < 0 ) { sign = -1; x = -xx; }if( x > T24M1 ) { mtherr( "sinf", TLOSS ); return(0.0); }j = FOPI * x; /* integer part of x/(PI/4) */y = j;/* map zeros to origin */if( j & 1 ) { j += 1; y += 1.0; }j &= 7; /* octant modulo 360 degrees *//* reflect in x axis */if( j > 3) { sign = -sign; j -= 4; }if( x > lossth ) { mtherr( "sinf", PLOSS ); x = x - y * PIO4F; }else {/* Extended precision modular arithmetic */ x = ((x - y * DP1) - y * DP2) - y * DP3; }/*einits();*/z = x * x;if( (j==1) || (j==2) ) {/* measured relative error in +/- pi/4 is 7.8e-8 *//* y = (( 2.443315711809948E-005 * z - 1.388731625493765E-003) * z + 4.166664568298827E-002) * z * z;*/ p = coscof; y = *p++; y = y * z + *p++; y = y * z + *p++; y *= z * z; y -= 0.5 * z; y += 1.0; }else {/* Theoretical relative error = 3.8e-9 in [-pi/4, +pi/4] *//* y = ((-1.9515295891E-4 * z + 8.3321608736E-3) * z - 1.6666654611E-1) * z * x; y += x;*/ p = sincof; y = *p++; y = y * z + *p++; y = y * z + *p++; y *= z * x; y += x; }/*einitd();*/if(sign < 0) y = -y;return( y);}/* Single precision circular cosine * test interval: [-pi/4, +pi/4] * trials: 10000 * peak relative error: 8.3e-8 * rms relative error: 2.2e-8 */float cosf( float xx ){float x, y, z;int j, sign;/* make argument positive */sign = 1;x = xx;if( x < 0 ) x = -x;if( x > T24M1 ) { mtherr( "cosf", TLOSS ); return(0.0); }j = FOPI * x; /* integer part of x/PIO4 */y = j;/* integer and fractional part modulo one octant */if( j & 1 ) /* map zeros to origin */ { j += 1; y += 1.0; }j &= 7;if( j > 3) { j -=4; sign = -sign; }if( j > 1 ) sign = -sign;if( x > lossth ) { mtherr( "cosf", PLOSS ); x = x - y * PIO4F; }else/* Extended precision modular arithmetic */ x = ((x - y * DP1) - y * DP2) - y * DP3;z = x * x;if( (j==1) || (j==2) ) { y = (((-1.9515295891E-4 * z + 8.3321608736E-3) * z - 1.6666654611E-1) * z * x) + x; }else { y = (( 2.443315711809948E-005 * z - 1.388731625493765E-003) * z + 4.166664568298827E-002) * z * z; y -= 0.5 * z; y += 1.0; }if(sign < 0) y = -y;return( y );}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -