📄 hypergf.c
字号:
/* hypergf.c * * Confluent hypergeometric function * * * * SYNOPSIS: * * float a, b, x, y, hypergf(); * * y = hypergf( a, b, x ); * * * * DESCRIPTION: * * Computes the confluent hypergeometric function * * 1 2 * a x a(a+1) x * F ( a,b;x ) = 1 + ---- + --------- + ... * 1 1 b 1! b(b+1) 2! * * Many higher transcendental functions are special cases of * this power series. * * As is evident from the formula, b must not be a negative * integer or zero unless a is an integer with 0 >= a > b. * * The routine attempts both a direct summation of the series * and an asymptotic expansion. In each case error due to * roundoff, cancellation, and nonconvergence is estimated. * The result with smaller estimated error is returned. * * * * ACCURACY: * * Tested at random points (a, b, x), all three variables * ranging from 0 to 30. * Relative error: * arithmetic domain # trials peak rms * IEEE 0,5 10000 6.6e-7 1.3e-7 * IEEE 0,30 30000 1.1e-5 6.5e-7 * * Larger errors can be observed when b is near a negative * integer or zero. Certain combinations of arguments yield * serious cancellation error in the power series summation * and also are not in the region of near convergence of the * asymptotic series. An error message is printed if the * self-estimated relative error is greater than 1.0e-3. * *//* hyperg.c *//*Cephes Math Library Release 2.1: November, 1988Copyright 1984, 1987, 1988 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>extern float MAXNUMF, MACHEPF;#define fabsf(x) ( (x) < 0 ? -(x) : (x) )#ifdef ANSICfloat expf(float);float hyp2f0f(float, float, float, int, float *);static float hy1f1af(float, float, float, float *);static float hy1f1pf(float, float, float, float *);float logf(float), gammaf(float), lgamf(float);#elsefloat expf(), hyp2f0f();float logf(), gammaf(), lgamf();static float hy1f1pf(), hy1f1af();#endiffloat hypergf( float aa, float bb, float xx ){float a, b, x, asum, psum, acanc, pcanc, temp;a = aa;b = bb;x = xx;/* See if a Kummer transformation will help */temp = b - a;if( fabsf(temp) < 0.001 * fabsf(a) ) return( expf(x) * hypergf( temp, b, -x ) );psum = hy1f1pf( a, b, x, &pcanc );if( pcanc < 1.0e-6 ) goto done;/* try asymptotic series */asum = hy1f1af( a, b, x, &acanc );/* Pick the result with less estimated error */if( acanc < pcanc ) { pcanc = acanc; psum = asum; }done:if( pcanc > 1.0e-3 ) mtherr( "hyperg", PLOSS );return( psum );}/* Power series summation for confluent hypergeometric function */static float hy1f1pf( float aa, float bb, float xx, float *err ){float a, b, x, n, a0, sum, t, u, temp;float an, bn, maxt, pcanc;a = aa;b = bb;x = xx;/* set up for power series summation */an = a;bn = b;a0 = 1.0;sum = 1.0;n = 1.0;t = 1.0;maxt = 0.0;while( t > MACHEPF ) { if( bn == 0 ) /* check bn first since if both */ { mtherr( "hypergf", SING ); return( MAXNUMF ); /* an and bn are zero it is */ } if( an == 0 ) /* a singularity */ return( sum ); if( n > 200 ) goto pdone; u = x * ( an / (bn * n) ); /* check for blowup */ temp = fabsf(u); if( (temp > 1.0 ) && (maxt > (MAXNUMF/temp)) ) { pcanc = 1.0; /* estimate 100% error */ goto blowup; } a0 *= u; sum += a0; t = fabsf(a0); if( t > maxt ) maxt = t;/* if( (maxt/fabsf(sum)) > 1.0e17 ) { pcanc = 1.0; goto blowup; }*/ an += 1.0; bn += 1.0; n += 1.0; }pdone:/* estimate error due to roundoff and cancellation */if( sum != 0.0 ) maxt /= fabsf(sum);maxt *= MACHEPF; /* this way avoids multiply overflow */pcanc = fabsf( MACHEPF * n + maxt );blowup:*err = pcanc;return( sum );}/* hy1f1a() *//* asymptotic formula for hypergeometric function: * * ( -a * -- ( |z| * | (b) ( -------- 2f0( a, 1+a-b, -1/x ) * ( -- * ( | (b-a) * * * x a-b ) * e |x| ) * + -------- 2f0( b-a, 1-a, 1/x ) ) * -- ) * | (a) ) */static float hy1f1af( float aa, float bb, float xx, float *err ){float a, b, x, h1, h2, t, u, temp, acanc, asum, err1, err2;a = aa;b = bb;x = xx;if( x == 0 ) { acanc = 1.0; asum = MAXNUMF; goto adone; }temp = logf( fabsf(x) );t = x + temp * (a-b);u = -temp * a;if( b > 0 ) { temp = lgamf(b); t += temp; u += temp; }h1 = hyp2f0f( a, a-b+1, -1.0/x, 1, &err1 );temp = expf(u) / gammaf(b-a);h1 *= temp;err1 *= temp;h2 = hyp2f0f( b-a, 1.0-a, 1.0/x, 2, &err2 );if( a < 0 ) temp = expf(t) / gammaf(a);else temp = expf( t - lgamf(a) );h2 *= temp;err2 *= temp;if( x < 0.0 ) asum = h1;else asum = h2;acanc = fabsf(err1) + fabsf(err2);if( b < 0 ) { temp = gammaf(b); asum *= temp; acanc *= fabsf(temp); }if( asum != 0.0 ) acanc /= fabsf(asum);acanc *= 30.0; /* fudge factor, since error of asymptotic formula * often seems this much larger than advertised */adone:*err = acanc;return( asum );}/* hyp2f0() */float hyp2f0f(float aa, float bb, float xx, int type, float *err){float a, b, x, a0, alast, t, tlast, maxt;float n, an, bn, u, sum, temp;a = aa;b = bb;x = xx;an = a;bn = b;a0 = 1.0;alast = 1.0;sum = 0.0;n = 1.0;t = 1.0;tlast = 1.0e9;maxt = 0.0;do { if( an == 0 ) goto pdone; if( bn == 0 ) goto pdone; u = an * (bn * x / n); /* check for blowup */ temp = fabsf(u); if( (temp > 1.0 ) && (maxt > (MAXNUMF/temp)) ) goto error; a0 *= u; t = fabsf(a0); /* terminating condition for asymptotic series */ if( t > tlast ) goto ndone; tlast = t; sum += alast; /* the sum is one term behind */ alast = a0; if( n > 200 ) goto ndone; an += 1.0; bn += 1.0; n += 1.0; if( t > maxt ) maxt = t; }while( t > MACHEPF );pdone: /* series converged! *//* estimate error due to roundoff and cancellation */*err = fabsf( MACHEPF * (n + maxt) );alast = a0;goto done;ndone: /* series did not converge *//* The following "Converging factors" are supposed to improve accuracy, * but do not actually seem to accomplish very much. */n -= 1.0;x = 1.0/x;switch( type ) /* "type" given as subroutine argument */{case 1: alast *= ( 0.5 + (0.125 + 0.25*b - 0.5*a + 0.25*x - 0.25*n)/x ); break;case 2: alast *= 2.0/3.0 - b + 2.0*a + x - n; break;default: ;}/* estimate error due to roundoff, cancellation, and nonconvergence */*err = MACHEPF * (n + maxt) + fabsf( a0 );done:sum += alast;return( sum );/* series blew up: */error:*err = MAXNUMF;mtherr( "hypergf", TLOSS );return( sum );}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -