📄 cbrtf.c
字号:
/* cbrtf.c * * Cube root * * * * SYNOPSIS: * * float x, y, cbrtf(); * * y = cbrtf( x ); * * * * DESCRIPTION: * * Returns the cube root of the argument, which may be negative. * * Range reduction involves determining the power of 2 of * the argument. A polynomial of degree 2 applied to the * mantissa, and multiplication by the cube root of 1, 2, or 4 * approximates the root to within about 0.1%. Then Newton's * iteration is used to converge to an accurate result. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,1e38 100000 7.6e-8 2.7e-8 * *//* cbrt.c *//*Cephes Math Library Release 2.2: June, 1992Copyright 1984, 1987, 1988, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>static float CBRT2 = 1.25992104989487316477;static float CBRT4 = 1.58740105196819947475;float frexpf(float, int *), ldexpf(float, int);float cbrtf( float xx ){int e, rem, sign;float x, z;x = xx;if( x == 0 ) return( 0.0 );if( x > 0 ) sign = 1;else { sign = -1; x = -x; }z = x;/* extract power of 2, leaving * mantissa between 0.5 and 1 */x = frexpf( x, &e );/* Approximate cube root of number between .5 and 1, * peak relative error = 9.2e-6 */x = (((-0.13466110473359520655053 * x + 0.54664601366395524503440 ) * x - 0.95438224771509446525043 ) * x + 1.1399983354717293273738 ) * x + 0.40238979564544752126924;/* exponent divided by 3 */if( e >= 0 ) { rem = e; e /= 3; rem -= 3*e; if( rem == 1 ) x *= CBRT2; else if( rem == 2 ) x *= CBRT4; }/* argument less than 1 */else { e = -e; rem = e; e /= 3; rem -= 3*e; if( rem == 1 ) x /= CBRT2; else if( rem == 2 ) x /= CBRT4; e = -e; }/* multiply by power of 2 */x = ldexpf( x, e );/* Newton iteration */x -= ( x - (z/(x*x)) ) * 0.333333333333;if( sign < 0 ) x = -x;return(x);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -