📄 knf.c
字号:
/* knf.c * * Modified Bessel function, third kind, integer order * * * * SYNOPSIS: * * float x, y, knf(); * int n; * * y = knf( n, x ); * * * * DESCRIPTION: * * Returns modified Bessel function of the third kind * of order n of the argument. * * The range is partitioned into the two intervals [0,9.55] and * (9.55, infinity). An ascending power series is used in the * low range, and an asymptotic expansion in the high range. * * * * ACCURACY: * * Absolute error, relative when function > 1: * arithmetic domain # trials peak rms * IEEE 0,30 10000 2.0e-4 3.8e-6 * * Error is high only near the crossover point x = 9.55 * between the two expansions used. *//*Cephes Math Library Release 2.2: June, 1992Copyright 1984, 1987, 1988, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*//*Algorithm for Kn. n-1 -n - (n-k-1)! 2 kK (x) = 0.5 (x/2) > -------- (-x /4) n - k! k=0 inf. 2 k n n - (x /4) + (-1) 0.5(x/2) > {p(k+1) + p(n+k+1) - 2log(x/2)} --------- - k! (n+k)! k=0where p(m) is the psi function: p(1) = -EUL and m-1 - p(m) = -EUL + > 1/k - k=1For large x, 2 2 2 u-1 (u-1 )(u-3 )K (z) = sqrt(pi/2z) exp(-z) { 1 + ------- + ------------ + ...} v 1 2 1! (8z) 2! (8z)asymptotically, where 2 u = 4 v .*/#include <math.h>#define EUL 5.772156649015328606065e-1#define MAXFAC 31extern float MACHEPF, MAXNUMF, MAXLOGF, PIF;#define fabsf(x) ( (x) < 0 ? -(x) : (x) )float expf(float), logf(float), sqrtf(float);float knf( int nnn, float xx ){float x, k, kf, nk1f, nkf, zn, t, s, z0, z;float ans, fn, pn, pk, zmn, tlg, tox;int i, n, nn;nn = nnn;x = xx;if( nn < 0 ) n = -nn;else n = nn;if( n > MAXFAC ) {overf: mtherr( "knf", OVERFLOW ); return( MAXNUMF ); }if( x <= 0.0 ) { if( x < 0.0 ) mtherr( "knf", DOMAIN ); else mtherr( "knf", SING ); return( MAXNUMF ); }if( x > 9.55 ) goto asymp;ans = 0.0;z0 = 0.25 * x * x;fn = 1.0;pn = 0.0;zmn = 1.0;tox = 2.0/x;if( n > 0 ) { /* compute factorial of n and psi(n) */ pn = -EUL; k = 1.0; for( i=1; i<n; i++ ) { pn += 1.0/k; k += 1.0; fn *= k; } zmn = tox; if( n == 1 ) { ans = 1.0/x; } else { nk1f = fn/n; kf = 1.0; s = nk1f; z = -z0; zn = 1.0; for( i=1; i<n; i++ ) { nk1f = nk1f/(n-i); kf = kf * i; zn *= z; t = nk1f * zn / kf; s += t; if( (MAXNUMF - fabsf(t)) < fabsf(s) ) goto overf; if( (tox > 1.0) && ((MAXNUMF/tox) < zmn) ) goto overf; zmn *= tox; } s *= 0.5; t = fabsf(s); if( (zmn > 1.0) && ((MAXNUMF/zmn) < t) ) goto overf; if( (t > 1.0) && ((MAXNUMF/t) < zmn) ) goto overf; ans = s * zmn; } }tlg = 2.0 * logf( 0.5 * x );pk = -EUL;if( n == 0 ) { pn = pk; t = 1.0; }else { pn = pn + 1.0/n; t = 1.0/fn; }s = (pk+pn-tlg)*t;k = 1.0;do { t *= z0 / (k * (k+n)); pk += 1.0/k; pn += 1.0/(k+n); s += (pk+pn-tlg)*t; k += 1.0; }while( fabsf(t/s) > MACHEPF );s = 0.5 * s / zmn;if( n & 1 ) s = -s;ans += s;return(ans);/* Asymptotic expansion for Kn(x) *//* Converges to 1.4e-17 for x > 18.4 */asymp:if( x > MAXLOGF ) { mtherr( "knf", UNDERFLOW ); return(0.0); }k = n;pn = 4.0 * k * k;pk = 1.0;z0 = 8.0 * x;fn = 1.0;t = 1.0;s = t;nkf = MAXNUMF;i = 0;do { z = pn - pk * pk; t = t * z /(fn * z0); nk1f = fabsf(t); if( (i >= n) && (nk1f > nkf) ) { goto adone; } nkf = nk1f; s += t; fn += 1.0; pk += 2.0; i += 1; }while( fabsf(t/s) > MACHEPF );adone:ans = expf(-x) * sqrtf( PIF/(2.0*x) ) * s;return(ans);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -