📄 jnf.c
字号:
/* jnf.c * * Bessel function of integer order * * * * SYNOPSIS: * * int n; * float x, y, jnf(); * * y = jnf( n, x ); * * * * DESCRIPTION: * * Returns Bessel function of order n, where n is a * (possibly negative) integer. * * The ratio of jn(x) to j0(x) is computed by backward * recurrence. First the ratio jn/jn-1 is found by a * continued fraction expansion. Then the recurrence * relating successive orders is applied until j0 or j1 is * reached. * * If n = 0 or 1 the routine for j0 or j1 is called * directly. * * * * ACCURACY: * * Absolute error: * arithmetic range # trials peak rms * IEEE 0, 15 30000 3.6e-7 3.6e-8 * * * Not suitable for large n or x. Use jvf() instead. * *//* jn.cCephes Math Library Release 2.2: June, 1992Copyright 1984, 1987, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>extern float MACHEPF;float j0f(float), j1f(float);float jnf( int n, float xx ){float x, pkm2, pkm1, pk, xk, r, ans, xinv, sign;int k;x = xx;sign = 1.0;if( n < 0 ) { n = -n; if( (n & 1) != 0 ) /* -1**n */ sign = -1.0; }if( n == 0 ) return( sign * j0f(x) );if( n == 1 ) return( sign * j1f(x) );if( n == 2 ) return( sign * (2.0 * j1f(x) / x - j0f(x)) );/*if( x < MACHEPF ) return( 0.0 );*//* continued fraction */k = 24;pk = 2 * (n + k);ans = pk;xk = x * x;do { pk -= 2.0; ans = pk - (xk/ans); }while( --k > 0 );/*ans = x/ans;*//* backward recurrence */pk = 1.0;/*pkm1 = 1.0/ans;*/xinv = 1.0/x;pkm1 = ans * xinv;k = n-1;r = (float )(2 * k);do { pkm2 = (pkm1 * r - pk * x) * xinv; pk = pkm1; pkm1 = pkm2; r -= 2.0; }while( --k > 0 );r = pk;if( r < 0 ) r = -r;ans = pkm1;if( ans < 0 ) ans = -ans;if( r > ans ) /* if( fabs(pk) > fabs(pkm1) ) */ ans = sign * j1f(x)/pk;else ans = sign * j0f(x)/pkm1;return( ans );}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -