📄 powf.c
字号:
/* powf.c * * Power function * * * * SYNOPSIS: * * float x, y, z, powf(); * * z = powf( x, y ); * * * * DESCRIPTION: * * Computes x raised to the yth power. Analytically, * * x**y = exp( y log(x) ). * * Following Cody and Waite, this program uses a lookup table * of 2**-i/16 and pseudo extended precision arithmetic to * obtain an extra three bits of accuracy in both the logarithm * and the exponential. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,10 100,000 1.4e-7 3.6e-8 * 1/10 < x < 10, x uniformly distributed. * -10 < y < 10, y uniformly distributed. * * * ERROR MESSAGES: * * message condition value returned * powf overflow x**y > MAXNUMF MAXNUMF * powf underflow x**y < 1/MAXNUMF 0.0 * powf domain x<0 and y noninteger 0.0 * *//*Cephes Math Library Release 2.2: June, 1992Copyright 1984, 1987, 1988 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>static char fname[] = {"powf"};/* 2^(-i/16) * The decimal values are rounded to 24-bit precision */static float A[] = { 1.00000000000000000000E0, 9.57603275775909423828125E-1, 9.17004048824310302734375E-1, 8.78126084804534912109375E-1, 8.40896427631378173828125E-1, 8.05245161056518554687500E-1, 7.71105408668518066406250E-1, 7.38413095474243164062500E-1, 7.07106769084930419921875E-1, 6.77127778530120849609375E-1, 6.48419797420501708984375E-1, 6.20928883552551269531250E-1, 5.94603538513183593750000E-1, 5.69394290447235107421875E-1, 5.45253872871398925781250E-1, 5.22136867046356201171875E-1, 5.00000000000000000000E-1};/* continuation, for even i only * 2^(i/16) = A[i] + B[i/2] */static float B[] = { 0.00000000000000000000E0,-5.61963907099083340520586E-9,-1.23776636307969995237668E-8, 4.03545234539989593104537E-9, 1.21016171044789693621048E-8,-2.00949968760174979411038E-8, 1.89881769396087499852802E-8,-6.53877009617774467211965E-9, 0.00000000000000000000E0};/* 1 / A[i] * The decimal values are full precision */static float Ainv[] = { 1.00000000000000000000000E0, 1.04427378242741384032197E0, 1.09050773266525765920701E0, 1.13878863475669165370383E0, 1.18920711500272106671750E0, 1.24185781207348404859368E0, 1.29683955465100966593375E0, 1.35425554693689272829801E0, 1.41421356237309504880169E0, 1.47682614593949931138691E0, 1.54221082540794082361229E0, 1.61049033194925430817952E0, 1.68179283050742908606225E0, 1.75625216037329948311216E0, 1.83400808640934246348708E0, 1.91520656139714729387261E0, 2.00000000000000000000000E0};#ifdef DEC#define MEXP 2032.0#define MNEXP -2032.0#else#define MEXP 2048.0#define MNEXP -2400.0#endif/* log2(e) - 1 */#define LOG2EA 0.44269504088896340736Fextern float MAXNUMF;#define F W#define Fa Wa#define Fb Wb#define G W#define Ga Wa#define Gb u#define H W#define Ha Wb#define Hb Wb#ifdef ANSICfloat floorf( float );float frexpf( float, int *);float ldexpf( float, int );float powif( float, int );#elsefloat floorf(), frexpf(), ldexpf(), powif();#endif/* Find a multiple of 1/16 that is within 1/16 of x. */#define reduc(x) 0.0625 * floorf( 16 * (x) )#ifdef ANSICfloat powf( float x, float y )#elsefloat powf( x, y )float x, y;#endif{float u, w, z, W, Wa, Wb, ya, yb;/* float F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */int e, i, nflg;nflg = 0; /* flag = 1 if x<0 raised to integer power */w = floorf(y);if( w < 0 ) z = -w;else z = w;if( (w == y) && (z < 32768.0) ) { i = w; w = powif( x, i ); return( w ); }if( x <= 0.0F ) { if( x == 0.0 ) { if( y == 0.0 ) return( 1.0 ); /* 0**0 */ else return( 0.0 ); /* 0**y */ } else { if( w != y ) { /* noninteger power of negative number */ mtherr( fname, DOMAIN ); return(0.0); } nflg = 1; if( x < 0 ) x = -x; } }/* separate significand from exponent */x = frexpf( x, &e );/* find significand in antilog table A[] */i = 1;if( x <= A[9] ) i = 9;if( x <= A[i+4] ) i += 4;if( x <= A[i+2] ) i += 2;if( x >= A[1] ) i = -1;i += 1;/* Find (x - A[i])/A[i] * in order to compute log(x/A[i]): * * log(x) = log( a x/a ) = log(a) + log(x/a) * * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a */x -= A[i];x -= B[ i >> 1 ];x *= Ainv[i];/* rational approximation for log(1+v): * * log(1+v) = v - 0.5 v^2 + v^3 P(v) * Theoretical relative error of the approximation is 3.5e-11 * on the interval 2^(1/16) - 1 > v > 2^(-1/16) - 1 */z = x*x;w = (((-0.1663883081054895 * x + 0.2003770364206271) * x - 0.2500006373383951) * x + 0.3333331095506474) * x * z;w -= 0.5 * z;/* Convert to base 2 logarithm: * multiply by log2(e) */w = w + LOG2EA * w;/* Note x was not yet added in * to above rational approximation, * so do it now, while multiplying * by log2(e). */z = w + LOG2EA * x;z = z + x;/* Compute exponent term of the base 2 logarithm. */w = -i;w *= 0.0625; /* divide by 16 */w += e;/* Now base 2 log of x is w + z. *//* Multiply base 2 log by y, in extended precision. *//* separate y into large part ya * and small part yb less than 1/16 */ya = reduc(y);yb = y - ya;F = z * y + w * yb;Fa = reduc(F);Fb = F - Fa;G = Fa + w * ya;Ga = reduc(G);Gb = G - Ga;H = Fb + Gb;Ha = reduc(H);w = 16 * (Ga + Ha);/* Test the power of 2 for overflow */if( w > MEXP ) { mtherr( fname, OVERFLOW ); return( MAXNUMF ); }if( w < MNEXP ) { mtherr( fname, UNDERFLOW ); return( 0.0 ); }e = w;Hb = H - Ha;if( Hb > 0.0 ) { e += 1; Hb -= 0.0625; }/* Now the product y * log2(x) = Hb + e/16.0. * * Compute base 2 exponential of Hb, * where -0.0625 <= Hb <= 0. * Theoretical relative error of the approximation is 2.8e-12. *//* z = 2**Hb - 1 */z = ((( 9.416993633606397E-003 * Hb + 5.549356188719141E-002) * Hb + 2.402262883964191E-001) * Hb + 6.931471791490764E-001) * Hb;/* Express e/16 as an integer plus a negative number of 16ths. * Find lookup table entry for the fractional power of 2. */if( e < 0 ) i = -( -e >> 4 );else i = (e >> 4) + 1;e = (i << 4) - e;w = A[e];z = w + w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */z = ldexpf( z, i ); /* multiply by integer power of 2 */if( nflg ) {/* For negative x, * find out if the integer exponent * is odd or even. */ w = 2 * floorf( (float) 0.5 * w ); if( w != y ) z = -z; /* odd exponent */ }return( z );}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -