📄 zetaf.c
字号:
/* zetaf.c * * Riemann zeta function of two arguments * * * * SYNOPSIS: * * float x, q, y, zetaf(); * * y = zetaf( x, q ); * * * * DESCRIPTION: * * * * inf. * - -x * zeta(x,q) = > (k+q) * - * k=0 * * where x > 1 and q is not a negative integer or zero. * The Euler-Maclaurin summation formula is used to obtain * the expansion * * n * - -x * zeta(x,q) = > (k+q) * - * k=1 * * 1-x inf. B x(x+1)...(x+2j) * (n+q) 1 - 2j * + --------- - ------- + > -------------------- * x-1 x - x+2j+1 * 2(n+q) j=1 (2j)! (n+q) * * where the B2j are Bernoulli numbers. Note that (see zetac.c) * zeta(x,1) = zetac(x) + 1. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,25 10000 6.9e-7 1.0e-7 * * Large arguments may produce underflow in powf(), in which * case the results are inaccurate. * * REFERENCE: * * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals, * Series, and Products, p. 1073; Academic Press, 1980. * *//*Cephes Math Library Release 2.2: July, 1992Copyright 1984, 1987, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>extern float MAXNUMF, MACHEPF;/* Expansion coefficients * for Euler-Maclaurin summation formula * (2k)! / B2k * where B2k are Bernoulli numbers */static float A[] = {12.0,-720.0,30240.0,-1209600.0,47900160.0,-1.8924375803183791606e9, /*1.307674368e12/691*/7.47242496e10,-2.950130727918164224e12, /*1.067062284288e16/3617*/1.1646782814350067249e14, /*5.109094217170944e18/43867*/-4.5979787224074726105e15, /*8.028576626982912e20/174611*/1.8152105401943546773e17, /*1.5511210043330985984e23/854513*/-7.1661652561756670113e18 /*1.6938241367317436694528e27/236364091*/};/* 30 Nov 86 -- error in third coefficient fixed */#define fabsf(x) ( (x) < 0 ? -(x) : (x) )float powf( float, float );float zetaf(float xx, float qq){int i;float x, q, a, b, k, s, w, t;x = xx;q = qq;if( x == 1.0 ) return( MAXNUMF );if( x < 1.0 ) { mtherr( "zetaf", DOMAIN ); return(0.0); }/* Euler-Maclaurin summation formula *//*if( x < 25.0 ){*/w = 9.0;s = powf( q, -x );a = q;for( i=0; i<9; i++ ) { a += 1.0; b = powf( a, -x ); s += b; if( b/s < MACHEPF ) goto done; }w = a;s += b*w/(x-1.0);s -= 0.5 * b;a = 1.0;k = 0.0;for( i=0; i<12; i++ ) { a *= x + k; b /= w; t = a*b/A[i]; s = s + t; t = fabsf(t/s); if( t < MACHEPF ) goto done; k += 1.0; a *= x + k; b /= w; k += 1.0; }done:return(s);/*}*//* Basic sum of inverse powers *//*pseres:s = powf( q, -x );a = q;do { a += 2.0; b = powf( a, -x ); s += b; }while( b/s > MACHEPF );b = powf( 2.0, -x );s = (s + b)/(1.0-b);return(s);*/}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -