⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sindgf.c

📁 linux下用PCMCIA无线网卡虚拟无线AP的程序源码
💻 C
字号:
/*							sindgf.c * *	Circular sine of angle in degrees * * * * SYNOPSIS: * * float x, y, sindgf(); * * y = sindgf( x ); * * * * DESCRIPTION: * * Range reduction is into intervals of 45 degrees. * * Two polynomial approximating functions are employed. * Between 0 and pi/4 the sine is approximated by *      x  +  x**3 P(x**2). * Between pi/4 and pi/2 the cosine is represented as *      1  -  x**2 Q(x**2). * * * ACCURACY: * *                      Relative error: * arithmetic   domain      # trials      peak       rms *    IEEE      +-3600      100,000      1.2e-7     3.0e-8 *  * ERROR MESSAGES: * *   message           condition        value returned * sin total loss      x > 2^24              0.0 * *//*							cosdgf.c * *	Circular cosine of angle in degrees * * * * SYNOPSIS: * * float x, y, cosdgf(); * * y = cosdgf( x ); * * * * DESCRIPTION: * * Range reduction is into intervals of 45 degrees. * * Two polynomial approximating functions are employed. * Between 0 and pi/4 the cosine is approximated by *      1  -  x**2 Q(x**2). * Between pi/4 and pi/2 the sine is represented as *      x  +  x**3 P(x**2). * * * ACCURACY: * *                      Relative error: * arithmetic   domain      # trials      peak         rms *    IEEE    -8192,+8192   100,000      3.0e-7     3.0e-8 *//*Cephes Math Library Release 2.2:  June, 1992Copyright 1985, 1987, 1988, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*//* Single precision circular sine * test interval: [-pi/4, +pi/4] * trials: 10000 * peak relative error: 6.8e-8 * rms relative error: 2.6e-8 */#include <math.h>/*static float FOPI = 1.27323954473516;*/extern float PIO4F;/* These are for a 24-bit significand: */static float T24M1 = 16777215.;static float PI180 = 0.0174532925199432957692; /* pi/180 */float sindgf( float xx ){float x, y, z;long j;int sign;sign = 1;x = xx;if( xx < 0 )	{	sign = -1;	x = -xx;	}if( x > T24M1 )	{	mtherr( "sindgf", TLOSS );	return(0.0);	}j = 0.022222222222222222222 * x; /* integer part of x/45 */y = j;/* map zeros to origin */if( j & 1 )	{	j += 1;	y += 1.0;	}j &= 7; /* octant modulo 360 degrees *//* reflect in x axis */if( j > 3)	{	sign = -sign;	j -= 4;	}x = x - y * 45.0;x *= PI180;	/* multiply by pi/180 to convert to radians */z = x * x;if( (j==1) || (j==2) )	{/*	y = ((( 2.4462803166E-5 * z	  - 1.3887580023E-3) * z	  + 4.1666650433E-2) * z	  - 4.9999999968E-1) * z	  + 1.0;*//* measured relative error in +/- pi/4 is 7.8e-8 */	y = ((  2.443315711809948E-005 * z	  - 1.388731625493765E-003) * z	  + 4.166664568298827E-002) * z * z;	y -= 0.5 * z;	y += 1.0;	}else	{/* Theoretical relative error = 3.8e-9 in [-pi/4, +pi/4] */	y = ((-1.9515295891E-4 * z	     + 8.3321608736E-3) * z	     - 1.6666654611E-1) * z * x;	y += x;	}if(sign < 0)	y = -y;return( y);}/* Single precision circular cosine * test interval: [-pi/4, +pi/4] * trials: 10000 * peak relative error: 8.3e-8 * rms relative error: 2.2e-8 */float cosdgf( float xx ){register float x, y, z;int j, sign;/* make argument positive */sign = 1;x = xx;if( x < 0 )	x = -x;if( x > T24M1 )	{	mtherr( "cosdgf", TLOSS );	return(0.0);	}j = 0.02222222222222222222222 * x; /* integer part of x/PIO4 */y = j;/* integer and fractional part modulo one octant */if( j & 1 )	/* map zeros to origin */	{	j += 1;	y += 1.0;	}j &= 7;if( j > 3)	{	j -=4;	sign = -sign;	}if( j > 1 )	sign = -sign;x = x - y * 45.0; /* x mod 45 degrees */x *= PI180;	/* multiply by pi/180 to convert to radians */z = x * x;if( (j==1) || (j==2) )	{	y = (((-1.9515295891E-4 * z	     + 8.3321608736E-3) * z	     - 1.6666654611E-1) * z * x)	     + x;	}else	{	y = ((  2.443315711809948E-005 * z	  - 1.388731625493765E-003) * z	  + 4.166664568298827E-002) * z * z;	y -= 0.5 * z;	y += 1.0;	}if(sign < 0)	y = -y;return( y );}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -