📄 tanl.c
字号:
/* tanl.c * * Circular tangent, long double precision * * * * SYNOPSIS: * * long double x, y, tanl(); * * y = tanl( x ); * * * * DESCRIPTION: * * Returns the circular tangent of the radian argument x. * * Range reduction is modulo pi/4. A rational function * x + x**3 P(x**2)/Q(x**2) * is employed in the basic interval [0, pi/4]. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE +-1.07e9 30000 1.9e-19 4.8e-20 * * ERROR MESSAGES: * * message condition value returned * tan total loss x > 2^39 0.0 * *//* cotl.c * * Circular cotangent, long double precision * * * * SYNOPSIS: * * long double x, y, cotl(); * * y = cotl( x ); * * * * DESCRIPTION: * * Returns the circular cotangent of the radian argument x. * * Range reduction is modulo pi/4. A rational function * x + x**3 P(x**2)/Q(x**2) * is employed in the basic interval [0, pi/4]. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE +-1.07e9 30000 1.9e-19 5.1e-20 * * * ERROR MESSAGES: * * message condition value returned * cot total loss x > 2^39 0.0 * cot singularity x = 0 INFINITYL * *//*Cephes Math Library Release 2.7: May, 1998Copyright 1984, 1990, 1998 by Stephen L. Moshier*/#include <math.h>#ifdef UNKstatic long double P[] = {-1.3093693918138377764608E4L, 1.1535166483858741613983E6L,-1.7956525197648487798769E7L,};static long double Q[] = {/* 1.0000000000000000000000E0L,*/ 1.3681296347069295467845E4L,-1.3208923444021096744731E6L, 2.5008380182335791583922E7L,-5.3869575592945462988123E7L,};static long double DP1 = 7.853981554508209228515625E-1L;static long double DP2 = 7.946627356147928367136046290398E-9L;static long double DP3 = 3.061616997868382943065164830688E-17L;#endif#ifdef IBMPCstatic short P[] = {0xbc1c,0x79f9,0xc692,0xcc96,0xc00c, XPD0xe5b1,0xe4ee,0x652f,0x8ccf,0x4013, XPD0xaf9a,0x4c8b,0x5699,0x88ff,0xc017, XPD};static short Q[] = {/*0x0000,0x0000,0x0000,0x8000,0x3fff,*/0x8ed4,0x9b2b,0x2f75,0xd5c5,0x400c, XPD0xadcd,0x55e4,0xe2c1,0xa13d,0xc013, XPD0x7adf,0x56c7,0x7e17,0xbecc,0x4017, XPD0x86f6,0xf2d1,0x01e5,0xcd7f,0xc018, XPD};static short P1[] = {0x0000,0x0000,0xda80,0xc90f,0x3ffe, XPD};static short P2[] = {0x0000,0x0000,0xa300,0x8885,0x3fe4, XPD};static short P3[] = {0x3707,0xa2e0,0x3198,0x8d31,0x3fc8, XPD};#define DP1 *(long double *)P1#define DP2 *(long double *)P2#define DP3 *(long double *)P3#endif#ifdef MIEEEstatic long P[] = {0xc00c0000,0xcc96c692,0x79f9bc1c,0x40130000,0x8ccf652f,0xe4eee5b1,0xc0170000,0x88ff5699,0x4c8baf9a,};static long Q[] = {/*0x3fff0000,0x80000000,0x00000000,*/0x400c0000,0xd5c52f75,0x9b2b8ed4,0xc0130000,0xa13de2c1,0x55e4adcd,0x40170000,0xbecc7e17,0x56c77adf,0xc0180000,0xcd7f01e5,0xf2d186f6,};static long P1[] = {0x3ffe0000,0xc90fda80,0x00000000};static long P2[] = {0x3fe40000,0x8885a300,0x00000000};static long P3[] = {0x3fc80000,0x8d313198,0xa2e03707};#define DP1 *(long double *)P1#define DP2 *(long double *)P2#define DP3 *(long double *)P3#endifstatic long double lossth = 5.49755813888e11L; /* 2^39 */extern long double PIO4L;extern long double MAXNUML;#ifdef ANSIPROTextern long double polevll ( long double, void *, int );extern long double p1evll ( long double, void *, int );extern long double floorl ( long double );extern long double ldexpl ( long double, int );extern int isnanl ( long double );extern int isfinitel ( long double );static long double tancotl( long double, int );#elselong double polevll(), p1evll(), floorl(), ldexpl(), isnanl(), isfinitel();static long double tancotl();#endif#ifdef INFINITIESextern long double INFINITYL;#endif#ifdef NANSextern long double NANL;#endiflong double tanl(x)long double x;{#ifdef NANSif( isnanl(x) ) return(x);#endif#ifdef MINUSZEROif( x == 0.0L ) return(x);#endif#ifdef NANSif( !isfinitel(x) ) { mtherr( "tanl", DOMAIN ); return(NANL); }#endifreturn( tancotl(x,0) );}long double cotl(x)long double x;{if( x == 0.0L ) { mtherr( "cotl", SING );#ifdef INFINITIES return( INFINITYL );#else return( MAXNUML );#endif }return( tancotl(x,1) );}static long double tancotl( xx, cotflg )long double xx;int cotflg;{long double x, y, z, zz;int j, sign;/* make argument positive but save the sign */if( xx < 0.0L ) { x = -xx; sign = -1; }else { x = xx; sign = 1; }if( x > lossth ) { if( cotflg ) mtherr( "cotl", TLOSS ); else mtherr( "tanl", TLOSS ); return(0.0L); }/* compute x mod PIO4 */y = floorl( x/PIO4L );/* strip high bits of integer part */z = ldexpl( y, -4 );z = floorl(z); /* integer part of y/16 */z = y - ldexpl( z, 4 ); /* y - 16 * (y/16) *//* integer and fractional part modulo one octant */j = z;/* map zeros and singularities to origin */if( j & 1 ) { j += 1; y += 1.0L; }z = ((x - y * DP1) - y * DP2) - y * DP3;zz = z * z;if( zz > 1.0e-20L ) y = z + z * (zz * polevll( zz, P, 2 )/p1evll(zz, Q, 4));else y = z; if( j & 2 ) { if( cotflg ) y = -y; else y = -1.0L/y; }else { if( cotflg ) y = 1.0L/y; }if( sign < 0 ) y = -y;return( y );}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -