⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nbdtrl.c

📁 linux下用PCMCIA无线网卡虚拟无线AP的程序源码
💻 C
字号:
/*							nbdtrl.c * *	Negative binomial distribution * * * * SYNOPSIS: * * int k, n; * long double p, y, nbdtrl(); * * y = nbdtrl( k, n, p ); * * * * DESCRIPTION: * * Returns the sum of the terms 0 through k of the negative * binomial distribution: * *   k *   --  ( n+j-1 )   n      j *   >   (       )  p  (1-p) *   --  (   j   ) *  j=0 * * In a sequence of Bernoulli trials, this is the probability * that k or fewer failures precede the nth success. * * The terms are not computed individually; instead the incomplete * beta integral is employed, according to the formula * * y = nbdtr( k, n, p ) = incbet( n, k+1, p ). * * The arguments must be positive, with p ranging from 0 to 1. * * * * ACCURACY: * * Tested at random points (k,n,p) with k and n between 1 and 10,000 * and p between 0 and 1. * * arithmetic   domain     # trials      peak         rms *    Absolute error: *    IEEE      0,10000     10000       9.8e-15     2.1e-16 * *//*							nbdtrcl.c * *	Complemented negative binomial distribution * * * * SYNOPSIS: * * int k, n; * long double p, y, nbdtrcl(); * * y = nbdtrcl( k, n, p ); * * * * DESCRIPTION: * * Returns the sum of the terms k+1 to infinity of the negative * binomial distribution: * *   inf *   --  ( n+j-1 )   n      j *   >   (       )  p  (1-p) *   --  (   j   ) *  j=k+1 * * The terms are not computed individually; instead the incomplete * beta integral is employed, according to the formula * * y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ). * * The arguments must be positive, with p ranging from 0 to 1. * * * * ACCURACY: * * See incbetl.c. * *//*							nbdtril * *	Functional inverse of negative binomial distribution * * * * SYNOPSIS: * * int k, n; * long double p, y, nbdtril(); * * p = nbdtril( k, n, y ); * * * * DESCRIPTION: * * Finds the argument p such that nbdtr(k,n,p) is equal to y. * * ACCURACY: * * Tested at random points (a,b,y), with y between 0 and 1. * *               a,b                     Relative error: * arithmetic  domain     # trials      peak         rms *    IEEE     0,100 * See also incbil.c. *//*Cephes Math Library Release 2.3:  January,1995Copyright 1984, 1995 by Stephen L. Moshier*/#include <math.h>#ifdef ANSIPROTextern long double incbetl ( long double, long double, long double );extern long double powl ( long double, long double );extern long double incbil ( long double, long double, long double );#elselong double incbetl(), powl(), incbil();#endiflong double nbdtrcl( k, n, p )int k, n;long double p;{long double dk, dn;if( (p < 0.0L) || (p > 1.0L) )	goto domerr;if( k < 0 )	{domerr:	mtherr( "nbdtrl", DOMAIN );	return( 0.0L );	}dn = n;if( k == 0 )	return( 1.0L - powl( p, dn ) );dk = k+1;return( incbetl( dk, dn, 1.0L - p ) );}long double nbdtrl( k, n, p )int k, n;long double p;{long double dk, dn;if( (p < 0.0L) || (p > 1.0L) )	goto domerr;if( k < 0 )	{domerr:	mtherr( "nbdtrl", DOMAIN );	return( 0.0L );	}dn = n;if( k == 0 )	return( powl( p, dn ) );dk = k+1;return( incbetl( dn, dk, p ) );}long double nbdtril( k, n, p )int k, n;long double p;{long double dk, dn, w;if( (p < 0.0L) || (p > 1.0L) )	goto domerr;if( k < 0 )	{domerr:	mtherr( "nbdtrl", DOMAIN );	return( 0.0L );	}dk = k+1;dn = n;w = incbil( dn, dk, p );return( w );}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -