⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mtstl.c

📁 linux下用PCMCIA无线网卡虚拟无线AP的程序源码
💻 C
字号:
/*   mtst.c Consistency tests for math functions. With NTRIALS=10000, the following are typical results for an alleged IEEE long double precision arithmetic:Consistency test of math functions.Max and rms errors for 10000 random arguments.A = absolute error criterion (but relative if >1):Otherwise, estimate is of relative errorx =   cbrt(   cube(x) ):  max = 7.65E-20   rms = 4.39E-21x =   atan(    tan(x) ):  max = 2.01E-19   rms = 3.96E-20x =    sin(   asin(x) ):  max = 2.15E-19   rms = 3.00E-20x =   sqrt( square(x) ):  max = 0.00E+00   rms = 0.00E+00x =    log(    exp(x) ):  max = 5.42E-20 A rms = 1.87E-21 Ax =   log2(   exp2(x) ):  max = 1.08E-19 A rms = 3.37E-21 Ax =  log10(  exp10(x) ):  max = 2.71E-20 A rms = 6.76E-22 Ax =  acosh(   cosh(x) ):  max = 3.13E-18 A rms = 3.21E-20 Ax = pow( pow(x,a),1/a ):  max = 1.25E-17   rms = 1.70E-19x =   tanh(  atanh(x) ):  max = 1.08E-19   rms = 1.16E-20x =  asinh(   sinh(x) ):  max = 1.03E-19   rms = 2.94E-21x =    cos(   acos(x) ):  max = 1.63E-19 A rms = 4.37E-20 Algam(x) = log(gamma(x)):  max = 2.31E-19 A rms = 5.93E-20 Ax =  ndtri(   ndtr(x) ):  max = 5.07E-17   rms = 7.03E-19Legendre  ellpk,  ellpe:  max = 7.59E-19 A rms = 1.72E-19 AAbsolute error and only 2000 trials:Wronksian of   Yn,   Jn:  max = 6.40E-18 A rms = 1.49E-19 ARelative error and only 100 trials:x = stdtri(stdtr(k,x) ):  max = 6.73E-19   rms = 2.46E-19*//*Cephes Math Library Release 2.3:  November, 1995Copyright 1984, 1987, 1988, 1995 by Stephen L. Moshier*/#include <math.h>/* C9X spells lgam lgamma.  */#define GLIBC2 0#define NTRIALS 10000#define WTRIALS (NTRIALS/5)#define STRTST 0/* Note, fabsl may be an intrinsic function. */#ifdef ANSIPROTextern long double fabsl ( long double );extern long double sqrtl ( long double );extern long double cbrtl ( long double );extern long double expl ( long double );extern long double logl ( long double );extern long double tanl ( long double );extern long double atanl ( long double );extern long double sinl ( long double );extern long double asinl ( long double );extern long double cosl ( long double );extern long double acosl ( long double );extern long double powl ( long double, long double );extern long double tanhl ( long double );extern long double atanhl ( long double );extern long double sinhl ( long double );extern long double asinhl ( long double );extern long double coshl ( long double );extern long double acoshl ( long double );extern long double exp2l ( long double );extern long double log2l ( long double );extern long double exp10l ( long double );extern long double log10l ( long double );extern long double gammal ( long double );extern long double lgaml ( long double );extern long double jnl ( int, long double );extern long double ynl ( int, long double );extern long double ndtrl ( long double );extern long double ndtril ( long double );extern long double stdtrl ( int, long double );extern long double stdtril ( int, long double );extern long double ellpel ( long double );extern long double ellpkl ( long double );extern void exit (int);#elselong double fabsl(), sqrtl();long double cbrtl(), expl(), logl(), tanl(), atanl();long double sinl(), asinl(), cosl(), acosl(), powl();long double tanhl(), atanhl(), sinhl(), asinhl(), coshl(), acoshl();long double exp2l(), log2l(), exp10l(), log10l();long double gammal(), lgaml(), jnl(), ynl(), ndtrl(), ndtril();long double stdtrl(), stdtril(), ellpel(), ellpkl();void exit ();#endifextern int merror;#if GLIBC2long double lgammal(long double);#endif/*NYI:double iv(), kn();*//* Provide inverses for square root and cube root: */long double squarel(x)long double x;{return( x * x );}long double cubel(x)long double x;{return( x * x * x );}/* lookup table for each function */struct fundef	{	char *nam1;		/* the function */	long double (*name )();	char *nam2;		/* its inverse  */	long double (*inv )();	int nargs;		/* number of function arguments */	int tstyp;		/* type code of the function */	long ctrl;		/* relative error flag */	long double arg1w;		/* width of domain for 1st arg */	long double arg1l;		/* lower bound domain 1st arg */	long arg1f;		/* flags, e.g. integer arg */	long double arg2w;		/* same info for args 2, 3, 4 */	long double arg2l;	long arg2f;/*	double arg3w;	double arg3l;	long arg3f;	double arg4w;	double arg4l;	long arg4f;*/	};/* fundef.ctrl bits: */#define RELERR 1#define EXPSCAL 4/* fundef.tstyp  test types: */#define POWER 1 #define ELLIP 2 #define GAMMA 3#define WRONK1 4#define WRONK2 5#define WRONK3 6#define STDTR 7/* fundef.argNf  argument flag bits: */#define INT 2extern long double MINLOGL;extern long double MAXLOGL;extern long double PIL;extern long double PIO2L;/*define MINLOG -170.0define MAXLOG +170.0define PI 3.14159265358979323846define PIO2 1.570796326794896619*/#define NTESTS 17struct fundef defs[NTESTS] = {{"  cube",   cubel,   "  cbrt",   cbrtl, 1, 0, 1, 2000.0L, -1000.0L,   0,0.0, 0.0, 0},{"   tan",    tanl,   "  atan",   atanl, 1, 0, 1,    0.0L,     0.0L,  0,0.0, 0.0, 0},{"  asin",   asinl,   "   sin",    sinl, 1, 0, 1,   2.0L,     -1.0L,  0,0.0, 0.0, 0},{"square", squarel,   "  sqrt",   sqrtl, 1, 0, 1,  170.0L,    -85.0L, EXPSCAL,0.0, 0.0, 0},{"   exp",    expl,   "   log",    logl, 1, 0, 0,  340.0L,    -170.0L,  0,0.0, 0.0, 0},{"  exp2",   exp2l,   "  log2",   log2l, 1, 0, 0,  340.0L,    -170.0L,  0,0.0, 0.0, 0},{" exp10",  exp10l,   " log10",  log10l, 1, 0, 0,  340.0L,    -170.0L,  0,0.0, 0.0, 0},{"  cosh",   coshl,   " acosh",  acoshl, 1, 0, 0,  340.0L,     0.0L,  0,0.0, 0.0, 0},{"pow",       powl,      "pow",    powl, 2, POWER, 1, 25.0L, 0.0L,   0,50.0, -25.0, 0},{" atanh",  atanhl,   "  tanh",   tanhl, 1, 0, 1,    2.0L,    -1.0L,  0,0.0, 0.0, 0},{"  sinh",   sinhl,   " asinh",  asinhl, 1, 0, 1,  340.0L,   0.0L,  0,0.0, 0.0, 0},{"  acos",   acosl,   "   cos",    cosl, 1, 0, 0,   2.0L,      -1.0L,  0,0.0, 0.0, 0},#if GLIBC2  /*{ "gamma",  gammal,     "lgammal",   lgammal, 1, GAMMA, 0, 34.0, 0.0,   0,0.0, 0.0, 0},*/#else{ "gamma",  gammal,     "lgam",   lgaml, 1, GAMMA, 0, 34.0, 0.0,   0,0.0, 0.0, 0},{ "  ndtr",   ndtrl,  " ndtri",  ndtril, 1, 0, 1,  10.0L,  -10.0L,  0,0.0, 0.0, 0},{" ellpe",  ellpel,   " ellpk",  ellpkl, 1, ELLIP, 0,   1.0L, 0.0L,  0,0.0, 0.0, 0},{ "stdtr",  stdtrl,   "stdtri", stdtril, 2, STDTR, 1, 4.0L, -2.0L,   0,30.0, 1.0, INT},{ "  Jn",     jnl,   "  Yn",     ynl, 2, WRONK1, 0, 30.0,  0.1,  0,40.0, -20.0, INT},#endif};static char *headrs[] = {"x = %s( %s(x) ): ","x = %s( %s(x,a),1/a ): ",	/* power */"Legendre %s, %s: ",		/* ellip */"%s(x) = log(%s(x)): ",		/* gamma */"Wronksian of %s, %s: ",  /* wronk1 */"Wronksian of %s, %s: ",  /* wronk2 */"Wronksian of %s, %s: ",  /* wronk3 */"x = %s(%s(k,x) ): ",	/* stdtr */}; static long double y1 = 0.0;static long double y2 = 0.0;static long double y3 = 0.0;static long double y4 = 0.0;static long double a = 0.0;static long double x = 0.0;static long double y = 0.0;static long double z = 0.0;static long double e = 0.0;static long double max = 0.0;static long double rmsa = 0.0;static long double rms = 0.0;static long double ave = 0.0;static double da, db, dc, dd;int ldrand();int printf();intmain(){long double (*fun )();long double (*ifun )();struct fundef *d;int i, k, itst;int m, ntr;ntr = NTRIALS;printf( "Consistency test of math functions.\n" );printf( "Max and rms errors for %d random arguments.\n",	ntr );printf( "A = absolute error criterion (but relative if >1):\n" );printf( "Otherwise, estimate is of relative error\n" );/* Initialize machine dependent parameters to test near the * largest an smallest possible arguments.  To compare different * machines, use the same test intervals for all systems. */defs[1].arg1w = PIL;defs[1].arg1l = -PIL/2.0;/*defs[3].arg1w = MAXLOGL;defs[3].arg1l = -MAXLOGL/2.0;defs[4].arg1w = 2.0*MAXLOGL;defs[4].arg1l = -MAXLOGL;defs[6].arg1w = 2.0*MAXLOGL;defs[6].arg1l = -MAXLOGL;defs[7].arg1w = MAXLOGL;defs[7].arg1l = 0.0;*//* Outer loop, on the test number: */for( itst=STRTST; itst<NTESTS; itst++ ){d = &defs[itst];m = 0;max = 0.0L;rmsa = 0.0L;ave = 0.0L;fun = d->name;ifun = d->inv;/* Smaller number of trials for Wronksians * (put them at end of list) */if( d->tstyp == WRONK1 )	{	ntr = WTRIALS;	printf( "Absolute error and only %d trials:\n", ntr );	}else if( d->tstyp == STDTR )	{	ntr = NTRIALS/100;	printf( "Relative error and only %d trials:\n", ntr );	}/*y1 = d->arg1l;y2 = d->arg1w;da = y1;db = y2;printf( "arg1l = %.4e, arg1w = %.4e\n", da, db );*/printf( headrs[d->tstyp], d->nam2, d->nam1 );for( i=0; i<ntr; i++ ){m++;k = 0;/* make random number(s) in desired range(s) */switch( d->nargs ){default:goto illegn;	case 2:ldrand( &a );a = d->arg2w *  ( a - 1.0L )  +  d->arg2l;if( d->arg2f & EXPSCAL )	{	a = expl(a);	ldrand( &y2 );	a -= 1.0e-13L * a * (y2 - 1.0L);	}if( d->arg2f & INT )	{	k = a + 0.25L;	a = k;	}case 1:ldrand( &x );y1 = d->arg1l;y2 = d->arg1w;x = y2 *  ( x - 1.0L )  +  y1;if( x < y1 )	x = y1;y1 += y2;if( x > y1 )	x = y1;if( d->arg1f & EXPSCAL )	{	x = expl(x);	ldrand( &y2 );	x += 1.0e-13L * x * (y2 - 1.0L);	}}/* compute function under test */switch( d->nargs )	{	case 1:	switch( d->tstyp )		{		case ELLIP:		y1 = ( *(fun) )(x);		y2 = ( *(fun) )(1.0L-x);		y3 = ( *(ifun) )(x);		y4 = ( *(ifun) )(1.0L-x);		break;#if 1		case GAMMA:		y = lgaml(x);		x = logl( gammal(x) );		break;#endif		default:		z = ( *(fun) )(x);		y = ( *(ifun) )(z);		}/*if( merror )	{	printf( "error: x = %.15e, z = %.15e, y = %.15e\n",	 (double )x, (double )z, (double )y );	}*/	break;		case 2:	if( d->arg2f & INT )		{		switch( d->tstyp )			{			case WRONK1:			y1 = (*fun)( k, x ); /* jn */			y2 = (*fun)( k+1, x );			y3 = (*ifun)( k, x ); /* yn */			y4 = (*ifun)( k+1, x );				break;			case WRONK2:			y1 = (*fun)( a, x ); /* iv */			y2 = (*fun)( a+1.0L, x );			y3 = (*ifun)( k, x ); /* kn */				y4 = (*ifun)( k+1, x );				break;			default:			z = (*fun)( k, x );			y = (*ifun)( k, z );			}		}	else		{		if( d->tstyp == POWER )			{			z = (*fun)( x, a );			y = (*ifun)( z, 1.0L/a );			}		else			{			z = (*fun)( a, x );			y = (*ifun)( a, z );			}		}	break;	default:illegn:	printf( "Illegal nargs= %d", d->nargs );	exit(1);	}	switch( d->tstyp )	{	case WRONK1:	/* Jn, Yn *//*	e = (y2*y3 - y1*y4) - 2.0L/(PIL*x);*/	e = x*(y2*y3 - y1*y4) - 2.0L/PIL;	break;	case WRONK2:/* In, Kn *//*	e = (y2*y3 + y1*y4) - 1.0L/x; */	e = x*(y2*y3 + y1*y4) - 1.0L;	break;		case ELLIP:	e = (y1-y3)*y4 + y3*y2 - PIO2L;	break;	default:	e = y - x;	break;	}if( d->ctrl & RELERR )	{	if( x != 0.0L )		e /= x;	else		printf( "warning, x == 0\n" );	}else	{	if( fabsl(x) > 1.0L )		e /= x;	}ave += e;/* absolute value of error */if( e < 0 )	e = -e;/* peak detect the error */if( e > max )	{	max = e;	if( e > 1.0e-10L )		{da = x;db = z;dc = y;dd = max;		printf("x %.6E z %.6E y %.6E max %.4E\n",		da, db, dc, dd );/*		if( d->tstyp >= WRONK1 )			{		printf( "y1 %.4E y2 %.4E y3 %.4E y4 %.4E k %d x %.4E\n",		 (double )y1, (double )y2, (double )y3,		 (double )y4, k, (double )x );			}*/		}/*	printf("%.8E %.8E %.4E %6ld \n", x, y, max, n);	printf("%d %.8E %.8E %.4E %6ld \n", k, x, y, max, n);	printf("%.6E %.6E %.6E %.4E %6ld \n", a, x, y, max, n);	printf("%.6E %.6E %.6E %.6E %.4E %6ld \n", a, b, x, y, max, n);	printf("%.4E %.4E %.4E %.4E %.4E %.4E %6ld \n",		a, b, c, x, y, max, n);*/	}/* accumulate rms error	*/e *= 1.0e16L;	/* adjust range */rmsa += e * e;	/* accumulate the square of the error */}/* report after NTRIALS trials */rms = 1.0e-16L * sqrtl( rmsa/m );da = max;db = rms;if(d->ctrl & RELERR)	printf(" max = %.2E   rms = %.2E\n", da, db );else	printf(" max = %.2E A rms = %.2E A\n", da, db );} /* loop on itst */exit (0);return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -