📄 curve.c
字号:
fp2_mul(g[j], g[k], g[2], p); fp2_mul(g[j], g[j], v, p); fp2_div(g[j], g[j], vdenom, p); fp2_set_1(v); fp2_set_1(vdenom); } point_init(Z); point_set_O(Z); m = mpz_sizeinbase(curve->q, 2) - 1; while(m>=0) { if (!mpz_tstbit(curve->q, m)) { fp2_sqr(v, v, p); fp2_sqr(vdenom, vdenom, p); get_tangent(v, vdenom, Qhat, R2, Z, p); point_add(Z, Z, Z, curve); get_vertical(v, vdenom, R2, Qhat, Z, p); m--; } else { l = m - windowsize + 1; if (l < 0) l = 0; l = mpz_scan1(curve->q, l); j = 1; fp2_sqr(v, v, p); fp2_sqr(vdenom, vdenom, p); get_tangent(v, vdenom, Qhat, R2, Z, p); point_add(Z, Z, Z, curve); get_vertical(v, vdenom, R2, Qhat, Z, p); for (k = m - 1; k>=l; k--) { j = j << 1; if (mpz_tstbit(curve->q, k)) j++; fp2_sqr(v, v, p); fp2_sqr(vdenom, vdenom, p); get_tangent(v, vdenom, Qhat, R2, Z, p); point_add(Z, Z, Z, curve); get_vertical(v, vdenom, R2, Qhat, Z, p); } fp2_mul(v, v, g[j], p); get_line(v, vdenom, Qhat, R2, Z, bP[j], p); point_add(Z, Z, bP[j], curve); get_vertical(v, vdenom, R2, Qhat, Z, p); m = l-1; } } if (fp2_is_0(v) || fp2_is_0(vdenom)) goto bad_R; else fp2_div(res, v, vdenom, p); // check with simple algorithm if (0) { fp2_t check; fp2_init(check); simple_miller(check, P, Phat, Qhat, R1, R2, curve); if (!fp2_equal(check, res)) { printf("res check = "); fp2_out_str(NULL, 0, res); printf(" "); fp2_out_str(NULL, 0, check); printf("\n"); fprintf(stderr, "BUG: miller() is incorrectly implemented\n"); //fp2_set(res, check); } fp2_clear(check); } fp2_clear(v); fp2_clear(vdenom); point_clear(Z); fp2_clear(g[2]); point_clear(bP[2]); for (i=0; i<=windowsizepower; i++) { j = 2*i + 1; point_clear(bP[j]); fp2_clear(g[j]); } return 1;bad_R: printf("bad R\n"); fp2_clear(v); fp2_clear(vdenom); /* TODO: memory leak if jumped here after g[] inited point_clear(Z); fp2_clear(g[2]); point_clear(bP[2]); for (i=0; i<=windowsizepower; i++) { j = 2*i + 1; point_clear(bP[j]); fp2_clear(g[j]); } */ return 0;}static void pts_preprocess_vertical(miller_cache_t mc, int i, point_t P, mpz_t z, mpz_t p){ mpz_t t0; mpz_init(t0); mpz_mul(t0, z, z); mpz_invert(t0, t0, p); mpz_mul(t0, t0, P->x->a); mpz_neg(t0, t0); mpz_mod(mc->denomc[i], t0, p); mpz_clear(t0);}void pts_preprocess_tangent(miller_cache_t mc, int i, point_t P, mpz_t z, mpz_t p){ mpz_t t0; mpz_t *numa, *numc; mpz_init(t0); numa = mc->numa; numc = mc->numc; assert(mpz_cmp_ui(P->y->a, 0)); //assume P not of order 2 //could handle with: //{ // mpz_set_ui(numa[i], 1); // mpz_set(numc[i], P->x->a); // return; //} //a = -3x^2/2yz //c = -(y + a * xz)/z^3; mpz_mul_2exp(t0, P->y->a, 1); mpz_mul(t0, t0, z); mpz_invert(t0, t0, p); mpz_mul(t0, t0, P->x->a); mpz_mul(t0, t0, P->x->a); mpz_mul_si(t0, t0, -3); mpz_mod(numa[i], t0, p); mpz_mul(t0, z, z); mpz_mul(t0, t0, z); mpz_invert(t0, t0, p); mpz_mul(numc[i], numa[i], P->x->a); mpz_mul(numc[i], numc[i], z); mpz_add(numc[i], numc[i], P->y->a); mpz_neg(numc[i], numc[i]); mpz_mul(t0, numc[i], t0); mpz_mod(numc[i], t0, p); mpz_clear(t0);}void pts_preprocess_line(mpz_t a, mpz_t c, point_t P, point_t Q, mpz_t p){ mpz_t t0; mpz_init(t0); //assume P.x != Q.x //a = -(Q.y - P.y) / (Q.x - P.x); //c = -(P.y + a * P.x); mpz_sub(c, Q->x->a, P->x->a); mpz_invert(c, c, p); mpz_sub(a, P->y->a, Q->y->a); mpz_mul(a, a, c); mpz_mod(a, a, p); mpz_mul(c, a, P->x->a); mpz_add(c, c, P->y->a); mpz_neg(c, c); mpz_mod(c, c, p); mpz_clear(t0);}void tate_preprocess(miller_cache_t mc, point_ptr P, curve_t curve)//for primes of the form 2^a +- 2^b +- 1//uses proj. coords, assumes P is a point over F_p//and that order of group = Solinas prime{ //specialized for Solinas primes int a, b; point_t bP; point_t Z; int i; mpz_t z, temp; mpz_ptr p = curve->p; mpz_init(z); mpz_init(temp); mpz_set_ui(z, 1); a = abs(curve->solinasa); b = abs(curve->solinasb); point_init(Z); point_init(bP); point_set(Z, P); i = 0; if (b != 0) { //work out f_2^b for(;i<b; i++) { //g //tate_get_tangent(v, Qhat, Z, p); //pts_get_tangent(v, Qhat, Z, z); pts_preprocess_tangent(mc, i, Z, z, p); //h //point_add(Z, Z, Z, curve); proj_double(Z->x->a, Z->y->a, z, p); //tate_get_vertical(vdenom, Qhat, Z, p); //pts_get_vertical(vdenom, Qhat, Z, z, p); pts_preprocess_vertical(mc, i, Z, z, p); } mpz_invert(z, z, p); zp_mul(temp, z, z, p); fp2_mul_mpz(Z->x, Z->x, temp, p); zp_mul(temp, temp, z, p); fp2_mul_mpz(Z->y, Z->y, temp, p); mpz_set_ui(z, 1); point_set(bP, Z); if (curve->solinasb < 0) { //tate_get_vertical(fbdenom, Qhat, Z); mpz_neg(mc->denomsb, Z->x->a); fp2_neg(bP->y, bP->y, p); } } //work out f_2^a for(; i<a; i++) { //g //pts_get_tangent(v, Qhat, Z, z); pts_preprocess_tangent(mc, i, Z, z, p); //h proj_double(Z->x->a, Z->y->a, z, p); //pts_get_vertical(vdenom, Qhat, Z, z); pts_preprocess_vertical(mc, i, Z, z, p); } mpz_invert(z, z, p); zp_mul(temp, z, z, p); fp2_mul_mpz(Z->x, Z->x, temp, p); zp_mul(temp, temp, z, p); fp2_mul_mpz(Z->y, Z->y, temp, p); mpz_set_ui(z, 1); //work out f_(2^a +- 2^b +- 1) if (b != 0) { //g //tate_get_line(v, Qhat, Z, bP); pts_preprocess_line(mc->numl1a, mc->numl1c, Z, bP, p); //h point_add(Z, Z, bP, curve); //tate_get_vertical(vdenom, Qhat, Z); mpz_sub(mc->denoml1c, p, Z->x->a); } //the sign of solinasa records whether it's +1 or -1 if (curve->solinasa < 0) { //tate_get_vertical(vdenom, Qhat, Z); mpz_sub(mc->denoms1, p, Z->x->a); } //g //tate_get_line(v, Qhat, Z, cP); //now Z = -cP so g is vertical mpz_sub(mc->numl2c, p, Z->x->a); //h //point_add(Z, Z, cP, curve); //now Z = O, so h = 1 //tate_get_vertical(vdenom, Qhat, Z); point_clear(Z); point_clear(bP); mpz_clear(z); mpz_clear(temp);}void miller_postprocess(fp2_ptr res, miller_cache_t mc, point_ptr Q, curve_t curve)//for primes of the form 2^a +- 2^b +- 1//uses proj. coords, assumes P is a point over F_p//and that order of group = Solinas prime{ //specialized for Solinas primes int a, b; fp2_t fb, fbdenom; fp2_t t0; fp2_t vdenom, v; int i; mpz_t *numa, *numc; mpz_t *denomc; mpz_ptr p = curve->p; numa = mc->numa; numc = mc->numc; denomc = mc->denomc; a = abs(curve->solinasa); b = abs(curve->solinasb); fp2_init(t0); fp2_init(vdenom); fp2_init(v); fp2_init(fb); fp2_init(fbdenom); fp2_set_1(v); fp2_set_1(vdenom); //f_1 = 1 i = 0; if (b != 0) { //work out f_2^b for(;i<b; i++) { fp2_sqr(v, v, p); fp2_sqr(vdenom, vdenom, p); //g //tate_get_tangent(v, Qhat, Z, p); //pts_get_tangent(v, Qhat, Z, z, p); { fp2_mul_mpz(t0, Q->x, numa[i], p); fp2_add(t0, t0, Q->y, p); mpz_add(t0->a, t0->a, numc[i]); fp2_mul(v, v, t0, p); } //h //tate_get_vertical(vdenom, Qhat, Z, p); //pts_get_vertical(vdenom, Qhat, Z, z, p); { fp2_set(t0, Q->x); mpz_add(t0->a, t0->a, denomc[i]); fp2_mul(vdenom, vdenom, t0, p); } } if (curve->solinasb < 0) { fp2_set(fbdenom, v); fp2_set(fb, vdenom); //tate_get_vertical(fbdenom, Qhat, Z, p); { fp2_set(t0, Q->x); mpz_add(t0->a, t0->a, mc->denomsb); fp2_mul(fbdenom, fbdenom, t0, p); } } else { fp2_set(fb, v); fp2_set(fbdenom, vdenom); } } //work out f_2^a for(; i<a; i++) { fp2_sqr(v, v, p); fp2_sqr(vdenom, vdenom, p); //g //pts_get_tangent(v, Qhat, Z, z, p); { fp2_mul_mpz(t0, Q->x, numa[i], p); fp2_add(t0, t0, Q->y, p); mpz_add(t0->a, t0->a, numc[i]); fp2_mul(v, v, t0, p); } //h //pts_get_vertical(vdenom, Qhat, Z, z, p); { fp2_set(t0, Q->x); mpz_add(t0->a, t0->a, denomc[i]); fp2_mul(vdenom, vdenom, t0, p); } } //work out f_(2^a +- 2^b +- 1) if (b != 0) { fp2_mul(v, v, fb, p); fp2_mul(vdenom, vdenom, fbdenom, p); //g //tate_get_line(v, Qhat, Z, bP, p); { fp2_mul_mpz(t0, Q->x, mc->numl1a, p); fp2_add(t0, t0, Q->y, p); mpz_add(t0->a, t0->a, mc->numl1c); fp2_mul(v, v, t0, p); } //h //tate_get_vertical(vdenom, Qhat, Z, p); { fp2_set(t0, Q->x); mpz_add(t0->a, t0->a, mc->denoml1c); fp2_mul(vdenom, vdenom, t0, p); } } if (curve->solinasa < 0) { //the sign of solinasa records whether it's +1 or -1 //tate_get_vertical(vdenom, Qhat, P); { fp2_set(t0, Q->x); mpz_add(t0->a, t0->a, mc->denoms1); fp2_mul(vdenom, vdenom, t0, p); } } //g //tate_get_line(v, Qhat, Z, cP); { fp2_set(t0, Q->x); mpz_add(t0->a, t0->a, mc->numl2c); fp2_mul(v, v, t0, p); } //h //tate_get_vertical(vdenom, Qhat, Z); fp2_div(res, v, vdenom, p); fp2_clear(v); fp2_clear(vdenom); fp2_clear(fb); fp2_clear(fbdenom); fp2_clear(t0);}void tate_postprocess(fp2_ptr res, miller_cache_t mc, point_ptr Q, curve_t curve){ bm_put(bm_get_time(), "miller0"); miller_postprocess(res, mc, Q, curve); bm_put(bm_get_time(), "miller1"); tate_power(res, curve);}void tate_solinas_miller(fp2_ptr res, point_ptr P, point_ptr Qhat, curve_t curve)//for primes of the form 2^a +- 2^b +- 1//uses proj. coords, assumes P is a point over F_p//and that order of group = Solinas prime{ //specialized for Solinas primes int a, b; fp2_t fb, fbdenom; point_t bP; fp2_t vdenom, v; point_t Z; int i; mpz_t z, temp; mpz_ptr p = curve->p; mpz_init(z); mpz_init(temp); mpz_set_ui(z, 1); a = abs(curve->solinasa); b = abs(curve->solinasb); point_init(Z); point_init(bP); fp2_init(vdenom); fp2_init(v); fp2_init(fb); fp2_init(fbdenom); fp2_set_1(v); fp2_set_1(vdenom); //f_1 = 1 point_set(Z, P); i = 0; if (b != 0) { //work out f_2^b for(;i<b; i++) { fp2_sqr(v, v, p); fp2_sqr(vdenom, vdenom, p); //g //tate_get_tangent(v, Qhat, Z); pts_get_tangent(v, Qhat, Z, z, p); //h //point_add(Z, Z, Z, curve); proj_double(Z->x->a, Z->y->a, z, p); //tate_get_vertical(vdenom, Qhat, Z); pts_get_vertical(vdenom, Qhat, Z, z, p); } mpz_invert(z, z, p); zp_mul(temp, z, z, p); fp2_mul_mpz(Z->x, Z->x, temp, p); zp_mul(temp, temp, z, p); fp2_mul_mpz(Z->y, Z->y, temp, p); mpz_set_ui(z, 1); point_set(bP, Z); if (curve->solinasb < 0) { fp2_set(fbdenom, v); fp2_set(fb, vdenom); tate_get_vertical(fbdenom, Qhat, Z, p); fp2_neg(bP->y, bP->y, p); } else { fp2_set(fb, v); fp2_set(fbdenom, vdenom); } } //work out f_2^a for(; i<a; i++) { fp2_sqr(v, v, p); fp2_sqr(vdenom, vdenom, p); //g pts_get_tangent(v, Qhat, Z, z, p); //h proj_double(Z->x->a, Z->y->a, z, p); pts_get_vertical(vdenom, Qhat, Z, z, p); } mpz_invert(z, z, p); zp_mul(temp, z, z, p); fp2_mul_mpz(Z->x, Z->x, temp, p); zp_mul(temp, temp, z, p); fp2_mul_mpz(Z->y, Z->y, temp, p); mpz_set_ui(z, 1); //work out f_(2^a +- 2^b +- 1)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -