⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mat_zz.c

📁 密码大家Shoup写的数论算法c语言实现
💻 C
📖 第 1 页 / 共 2 页
字号:
#include <NTL/mat_ZZ.h>#include <NTL/new.h>NTL_START_IMPLNTL_matrix_impl(ZZ,vec_ZZ,vec_vec_ZZ,mat_ZZ)NTL_io_matrix_impl(ZZ,vec_ZZ,vec_vec_ZZ,mat_ZZ)NTL_eq_matrix_impl(ZZ,vec_ZZ,vec_vec_ZZ,mat_ZZ)void add(mat_ZZ& X, const mat_ZZ& A, const mat_ZZ& B)  {     long n = A.NumRows();     long m = A.NumCols();       if (B.NumRows() != n || B.NumCols() != m)         Error("matrix add: dimension mismatch");       X.SetDims(n, m);       long i, j;     for (i = 1; i <= n; i++)         for (j = 1; j <= m; j++)           add(X(i,j), A(i,j), B(i,j));  }    void sub(mat_ZZ& X, const mat_ZZ& A, const mat_ZZ& B)  {     long n = A.NumRows();     long m = A.NumCols();       if (B.NumRows() != n || B.NumCols() != m)        Error("matrix sub: dimension mismatch");       X.SetDims(n, m);       long i, j;     for (i = 1; i <= n; i++)        for (j = 1; j <= m; j++)           sub(X(i,j), A(i,j), B(i,j));  }    void mul_aux(mat_ZZ& X, const mat_ZZ& A, const mat_ZZ& B)  {     long n = A.NumRows();     long l = A.NumCols();     long m = B.NumCols();       if (l != B.NumRows())        Error("matrix mul: dimension mismatch");       X.SetDims(n, m);       long i, j, k;     ZZ acc, tmp;       for (i = 1; i <= n; i++) {        for (j = 1; j <= m; j++) {           clear(acc);           for(k = 1; k <= l; k++) {              mul(tmp, A(i,k), B(k,j));              add(acc, acc, tmp);           }           X(i,j) = acc;        }     }  }      void mul(mat_ZZ& X, const mat_ZZ& A, const mat_ZZ& B)  {     if (&X == &A || &X == &B) {        mat_ZZ tmp;        mul_aux(tmp, A, B);        X = tmp;     }     else        mul_aux(X, A, B);  }      staticvoid mul_aux(vec_ZZ& x, const mat_ZZ& A, const vec_ZZ& b)  {     long n = A.NumRows();     long l = A.NumCols();       if (l != b.length())        Error("matrix mul: dimension mismatch");       x.SetLength(n);       long i, k;     ZZ acc, tmp;       for (i = 1; i <= n; i++) {        clear(acc);        for (k = 1; k <= l; k++) {           mul(tmp, A(i,k), b(k));           add(acc, acc, tmp);        }        x(i) = acc;     }  }      void mul(vec_ZZ& x, const mat_ZZ& A, const vec_ZZ& b)  {     if (&b == &x || A.position(b) != -1) {      vec_ZZ tmp;      mul_aux(tmp, A, b);      x = tmp;   }   else      mul_aux(x, A, b);}  staticvoid mul_aux(vec_ZZ& x, const vec_ZZ& a, const mat_ZZ& B)  {     long n = B.NumRows();     long l = B.NumCols();       if (n != a.length())        Error("matrix mul: dimension mismatch");       x.SetLength(l);       long i, k;     ZZ acc, tmp;       for (i = 1; i <= l; i++) {        clear(acc);        for (k = 1; k <= n; k++) {           mul(tmp, a(k), B(k,i));         add(acc, acc, tmp);        }        x(i) = acc;     }  }  void mul(vec_ZZ& x, const vec_ZZ& a, const mat_ZZ& B){   if (&a == &x || B.position(a) != -1) {      vec_ZZ tmp;      mul_aux(tmp, a, B);      x = tmp;   }   else      mul_aux(x, a, B);}       void ident(mat_ZZ& X, long n)  {     X.SetDims(n, n);     long i, j;       for (i = 1; i <= n; i++)        for (j = 1; j <= n; j++)           if (i == j)              set(X(i, j));           else              clear(X(i, j));  } staticlong DetBound(const mat_ZZ& a){   long n = a.NumRows();   long i;   ZZ res, t1;   set(res);   for (i = 0; i < n; i++) {      InnerProduct(t1, a[i], a[i]);      if (t1 > 1) {         SqrRoot(t1, t1);         add(t1, t1, 1);      }      mul(res, res, t1);   }   return NumBits(res);}   void determinant(ZZ& rres, const mat_ZZ& a, long deterministic){   long n = a.NumRows();   if (a.NumCols() != n)      Error("determinant: nonsquare matrix");   if (n == 0) {      set(rres);      return;   }   zz_pBak zbak;   zbak.save();   ZZ_pBak Zbak;   Zbak.save();   long instable = 1;   long gp_cnt = 0;   long bound = 2+DetBound(a);   ZZ res, prod;   clear(res);   set(prod);   long i;   for (i = 0; ; i++) {      if (NumBits(prod) > bound)         break;      if (!deterministic &&          !instable && bound > 1000 && NumBits(prod) < 0.25*bound) {         ZZ P;         long plen = 90 + NumBits(max(bound, NumBits(res)));         GenPrime(P, plen, 90 + 2*NumBits(gp_cnt++));         ZZ_p::init(P);         mat_ZZ_p A;         conv(A, a);         ZZ_p t;         determinant(t, A);         if (CRT(res, prod, rep(t), P))            instable = 1;         else            break;      }      zz_p::FFTInit(i);      long p = zz_p::modulus();      mat_zz_p A;      conv(A, a);      zz_p t;      determinant(t, A);      instable = CRT(res, prod, rep(t), p);   }   rres = res;   zbak.restore();   Zbak.restore();}void conv(mat_zz_p& x, const mat_ZZ& a){   long n = a.NumRows();   long m = a.NumCols();   long i;   x.SetDims(n, m);   for (i = 0; i < n; i++)      conv(x[i], a[i]);}void conv(mat_ZZ_p& x, const mat_ZZ& a){   long n = a.NumRows();   long m = a.NumCols();   long i;   x.SetDims(n, m);   for (i = 0; i < n; i++)      conv(x[i], a[i]);}long IsIdent(const mat_ZZ& A, long n){   if (A.NumRows() != n || A.NumCols() != n)      return 0;   long i, j;   for (i = 1; i <= n; i++)      for (j = 1; j <= n; j++)         if (i != j) {            if (!IsZero(A(i, j))) return 0;         }         else {            if (!IsOne(A(i, j))) return 0;         }   return 1;}void transpose(mat_ZZ& X, const mat_ZZ& A){   long n = A.NumRows();   long m = A.NumCols();   long i, j;   if (&X == & A) {      if (n == m)         for (i = 1; i <= n; i++)            for (j = i+1; j <= n; j++)               swap(X(i, j), X(j, i));      else {         mat_ZZ tmp;         tmp.SetDims(m, n);         for (i = 1; i <= n; i++)            for (j = 1; j <= m; j++)               tmp(j, i) = A(i, j);         X.kill();         X = tmp;      }   }   else {      X.SetDims(m, n);      for (i = 1; i <= n; i++)         for (j = 1; j <= m; j++)            X(j, i) = A(i, j);   }}long CRT(mat_ZZ& gg, ZZ& a, const mat_zz_p& G){   long n = gg.NumRows();   long m = gg.NumCols();   if (G.NumRows() != n || G.NumCols() != m)      Error("CRT: dimension mismatch");   long p = zz_p::modulus();   ZZ new_a;   mul(new_a, a, p);   long a_inv;   a_inv = rem(a, p);   a_inv = InvMod(a_inv, p);   long p1;   p1 = p >> 1;   ZZ a1;   RightShift(a1, a, 1);   long p_odd = (p & 1);   long modified = 0;   long h;   ZZ ah;   ZZ g;   long i, j;   for (i = 0; i < n; i++) {      for (j = 0; j < m; j++) {         if (!CRTInRange(gg[i][j], a)) {            modified = 1;            rem(g, gg[i][j], a);            if (g > a1) sub(g, g, a);         }         else            g = gg[i][j];               h = rem(g, p);         h = SubMod(rep(G[i][j]), h, p);         h = MulMod(h, a_inv, p);         if (h > p1)            h = h - p;               if (h != 0) {            modified = 1;            mul(ah, a, h);                  if (!p_odd && g > 0 && (h == p1))               sub(g, g, ah);            else               add(g, g, ah);         }            gg[i][j] = g;      }   }   a = new_a;   return modified;}void mul(mat_ZZ& X, const mat_ZZ& A, const ZZ& b_in){   ZZ b = b_in;   long n = A.NumRows();   long m = A.NumCols();   X.SetDims(n, m);   long i, j;   for (i = 0; i < n; i++)      for (j = 0; j < m; j++)         mul(X[i][j], A[i][j], b);}void mul(mat_ZZ& X, const mat_ZZ& A, long b){   long n = A.NumRows();   long m = A.NumCols();   X.SetDims(n, m);   long i, j;   for (i = 0; i < n; i++)      for (j = 0; j < m; j++)         mul(X[i][j], A[i][j], b);}staticvoid ExactDiv(vec_ZZ& x, const ZZ& d){   long n = x.length();   long i;   for (i = 0; i < n; i++)      if (!divide(x[i], x[i], d))         Error("inexact division");}staticvoid ExactDiv(mat_ZZ& x, const ZZ& d){   long n = x.NumRows();   long m = x.NumCols();      long i, j;   for (i = 0; i < n; i++)      for (j = 0; j < m; j++)         if (!divide(x[i][j], x[i][j], d))            Error("inexact division");}void diag(mat_ZZ& X, long n, const ZZ& d_in)  {     ZZ d = d_in;   X.SetDims(n, n);     long i, j;       for (i = 1; i <= n; i++)        for (j = 1; j <= n; j++)           if (i == j)              X(i, j) = d;           else              clear(X(i, j));  } long IsDiag(const mat_ZZ& A, long n, const ZZ& d){   if (A.NumRows() != n || A.NumCols() != n)      return 0;   long i, j;   for (i = 1; i <= n; i++)      for (j = 1; j <= n; j++)         if (i != j) {            if (!IsZero(A(i, j))) return 0;         }         else {            if (A(i, j) != d) return 0;         }   return 1;}void solve(ZZ& d_out, vec_ZZ& x_out,           const mat_ZZ& A, const vec_ZZ& b,           long deterministic){   long n = A.NumRows();      if (A.NumCols() != n)      Error("solve: nonsquare matrix");   if (b.length() != n)      Error("solve: dimension mismatch");   if (n == 0) {      set(d_out);      x_out.SetLength(0);      return;   }   zz_pBak zbak;   zbak.save();   ZZ_pBak Zbak;   Zbak.save();   vec_ZZ x(INIT_SIZE, n);   ZZ d, d1;   ZZ d_prod, x_prod;   set(d_prod);   set(x_prod);   long d_instable = 1;   long x_instable = 1;   long check = 0;   long gp_cnt = 0;   vec_ZZ y, b1;   long i;   long bound = 2+DetBound(A);   for (i = 0; ; i++) {      if ((check || IsZero(d)) && !d_instable) {         if (NumBits(d_prod) > bound) {            break;         }         else if (!deterministic &&                  bound > 1000 && NumBits(d_prod) < 0.25*bound) {            ZZ P;               long plen = 90 + NumBits(max(bound, NumBits(d)));            GenPrime(P, plen, 90 + 2*NumBits(gp_cnt++));               ZZ_p::init(P);               mat_ZZ_p AA;            conv(AA, A);               ZZ_p dd;            determinant(dd, AA);               if (CRT(d, d_prod, rep(dd), P))               d_instable = 1;            else                break;         }      }      zz_p::FFTInit(i);      long p = zz_p::modulus();      mat_zz_p AA;      conv(AA, A);      if (!check) {         vec_zz_p bb, xx;         conv(bb, b);         zz_p dd;          solve(dd, xx, AA, bb);         d_instable = CRT(d, d_prod, rep(dd), p);         if (!IsZero(dd)) {            mul(xx, xx, dd);            x_instable = CRT(x, x_prod, xx);         }         else            x_instable = 1;         if (!d_instable && !x_instable) {            mul(y, x, A);            mul(b1, b, d);            if (y == b1) {               d1 = d;               check = 1;            }         }      }      else {         zz_p dd;         determinant(dd, AA);         d_instable = CRT(d, d_prod, rep(dd), p);      }   }   if (check && d1 != d) {      mul(x, x, d);      ExactDiv(x, d1);   }   d_out = d;   if (check) x_out = x;   zbak.restore();   Zbak.restore();}void inv(ZZ& d_out, mat_ZZ& x_out, const mat_ZZ& A, long deterministic){   long n = A.NumRows();      if (A.NumCols() != n)      Error("solve: nonsquare matrix");   if (n == 0) {      set(d_out);      x_out.SetDims(0, 0);      return;   }   zz_pBak zbak;   zbak.save();   ZZ_pBak Zbak;   Zbak.save();   mat_ZZ x(INIT_SIZE, n, n);   ZZ d, d1;   ZZ d_prod, x_prod;   set(d_prod);   set(x_prod);   long d_instable = 1;   long x_instable = 1;   long gp_cnt = 0;   long check = 0;   mat_ZZ y;   long i;   long bound = 2+DetBound(A);   for (i = 0; ; i++) {      if ((check || IsZero(d)) && !d_instable) {         if (NumBits(d_prod) > bound) {            break;         }         else if (!deterministic &&                  bound > 1000 && NumBits(d_prod) < 0.25*bound) {            ZZ P;               long plen = 90 + NumBits(max(bound, NumBits(d)));            GenPrime(P, plen, 90 + 2*NumBits(gp_cnt++));               ZZ_p::init(P);               mat_ZZ_p AA;            conv(AA, A);               ZZ_p dd;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -