⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lll_qp.c

📁 密码大家Shoup写的数论算法c语言实现
💻 C
📖 第 1 页 / 共 3 页
字号:
            swap(B(i), B(i+1));            tp = B1[i]; B1[i] = B1[i+1]; B1[i+1] = tp;            t1 = b[i]; b[i] = b[i+1]; b[i+1] = t1;            t1 = max_b[i]; max_b[i] = max_b[i+1]; max_b[i+1] = t1;            if (U) swap((*U)(i), (*U)(i+1));         }         for (i = k; i <= m+1; i++) st[i] = 1;         m--;         if (quit) break;         continue;      }      if (quit) break;      if (deep > 0) {         // deep insertions            quad_float cc = b[k];         long l = 1;         while (l <= k-1 && delta*c[l] <= cc) {            cc = cc - mu[k][l]*mu[k][l]*c[l];            l++;         }            if (l <= k-1 && (l <= deep || k-l <= deep)) {            // deep insertion at position l               for (i = k; i > l; i--) {               // swap rows i, i-1               swap(B(i), B(i-1));               tp = B1[i]; B1[i] = B1[i-1]; B1[i-1] = tp;               tp = mu[i]; mu[i] = mu[i-1]; mu[i-1] = tp;               t1 = b[i]; b[i] = b[i-1]; b[i-1] = t1;               t1 = max_b[i]; max_b[i] = max_b[i-1]; max_b[i-1] = t1;               if (U) swap((*U)(i), (*U)(i-1));            }               k = l;            NumSwaps++;            continue;         }      } // end deep insertions      // test LLL reduction condition      if (k > 1 && delta*c[k-1] > c[k] + mu[k][k-1]*mu[k][k-1]*c[k-1]) {         // swap rows k, k-1         swap(B(k), B(k-1));         tp = B1[k]; B1[k] = B1[k-1]; B1[k-1] = tp;         tp = mu[k]; mu[k] = mu[k-1]; mu[k-1] = tp;         t1 = b[k]; b[k] = b[k-1]; b[k-1] = t1;         t1 = max_b[k]; max_b[k] = max_b[k-1]; max_b[k-1] = t1;         if (U) swap((*U)(k), (*U)(k-1));         k--;         NumSwaps++;         // cout << "- " << k << "\n";      }      else {         k++;         // cout << "+ " << k << "\n";      }   }   if (verbose) {      LLLStatus(m+1, GetTime(), m, B);   }   delete [] buf;   delete [] max_b;   return m;}staticlong LLL_QP(mat_ZZ& B, mat_ZZ* U, quad_float delta, long deep,            LLLCheckFct check){   long m = B.NumRows();   long n = B.NumCols();   long i, j;   long new_m, dep, quit;   quad_float s;   ZZ MU;   quad_float mu1;   quad_float t1;   ZZ T1;   init_red_fudge();   if (U) ident(*U, m);   quad_float **B1;  // approximates B   typedef quad_float *quad_floatptr;   B1 = NTL_NEW_OP quad_floatptr[m+1];   if (!B1) Error("LLL_QP: out of memory");   for (i = 1; i <= m; i++) {      B1[i] = NTL_NEW_OP quad_float[n+1];      if (!B1[i]) Error("LLL_QP: out of memory");   }   quad_float **mu;   mu = NTL_NEW_OP quad_floatptr[m+1];   if (!mu) Error("LLL_QP: out of memory");   for (i = 1; i <= m; i++) {      mu[i] = NTL_NEW_OP quad_float[m+1];      if (!mu[i]) Error("LLL_QP: out of memory");   }   quad_float *c; // squared lengths of Gramm-Schmidt basis vectors   c = NTL_NEW_OP quad_float[m+1];   if (!c) Error("LLL_QP: out of memory");   quad_float *b; // squared lengths of basis vectors   b = NTL_NEW_OP quad_float[m+1];   if (!b) Error("LLL_QP: out of memory");   for (i = 1; i <=m; i++)      for (j = 1; j <= n; j++)          conv(B1[i][j], B(i, j));            for (i = 1; i <= m; i++) {      b[i] = InnerProduct(B1[i], B1[i], n);      if (!IsFinite(&b[i]))         Error("LLL_QP: numbers too big...use LLL_XD");   }   new_m = ll_LLL_QP(B, U, delta, deep, check, B1, mu, b, c, m, 1, quit);   dep = m - new_m;   m = new_m;   if (dep > 0) {      // for consistency, we move all of the zero rows to the front      for (i = 0; i < m; i++) {         swap(B(m+dep-i), B(m-i));         if (U) swap((*U)(m+dep-i), (*U)(m-i));      }   }   // clean-up   for (i = 1; i <= m; i++) {      delete [] B1[i];   }   delete [] B1;   for (i = 1; i <= m; i++) {      delete [] mu[i];   }   delete [] mu;   delete [] c;   delete [] b;   return m;}         long LLL_QP(mat_ZZ& B, double delta, long deep, LLLCheckFct check,            long verb){   verbose = verb;   NumSwaps = 0;   if (verbose) {      StartTime = GetTime();      LastTime = StartTime;   }   if (delta < 0.50 || delta >= 1) Error("LLL_QP: bad delta");   if (deep < 0) Error("LLL_QP: bad deep");   return LLL_QP(B, 0, to_quad_float(delta), deep, check);}long LLL_QP(mat_ZZ& B, mat_ZZ& U, double delta, long deep,            LLLCheckFct check, long verb){   verbose = verb;   NumSwaps = 0;   if (verbose) {      StartTime = GetTime();      LastTime = StartTime;   }   if (delta < 0.50 || delta >= 1) Error("LLL_QP: bad delta");   if (deep < 0) Error("LLL_QP: bad deep");   return LLL_QP(B, &U, to_quad_float(delta), deep, check);}static vec_quad_float BKZConstant;staticvoid ComputeBKZConstant(long beta, long p){   const quad_float c_PI =       to_quad_float("3.141592653589793238462643383279502884197");   const quad_float LogPI =       to_quad_float("1.144729885849400174143427351353058711647");   BKZConstant.SetLength(beta-1);   vec_quad_float Log;   Log.SetLength(beta);   long i, j, k;   quad_float x, y;   for (j = 1; j <= beta; j++)      Log(j) = log(to_quad_float(j));   for (i = 1; i <= beta-1; i++) {      // First, we compute x = gamma(i/2)^{2/i}      k = i/2;      if ((i & 1) == 0) { // i even         x = 0;         for (j = 1; j <= k; j++)            x = x + Log(j);                   x = x * (1/to_quad_float(k));         x = exp(x);      }      else { // i odd         x = 0;         for (j = k + 2; j <= 2*k + 2; j++)            x = x + Log(j);         x = 0.5*LogPI + x - 2*(k+1)*Log(2);         x = x * (2.0/to_quad_float(i));         x = exp(x);      }      // Second, we compute y = 2^{2*p/i}      y = -(2*p/to_quad_float(i))*Log(2);      y = exp(y);      BKZConstant(i) = x*y/c_PI;   }}static vec_quad_float BKZThresh;static void ComputeBKZThresh(quad_float *c, long beta){   BKZThresh.SetLength(beta-1);   long i;   quad_float x;   x = 0;   for (i = 1; i <= beta-1; i++) {      x += log(c[i-1]);      BKZThresh(i) = exp(x/to_quad_float(i))*BKZConstant(i);      if (!IsFinite(&BKZThresh(i))) BKZThresh(i) = 0;   }}static void BKZStatus(double tt, double enum_time, long NumIterations,                long NumTrivial, long NumNonTrivial, long NumNoOps, long m,                const mat_ZZ& B){   cerr << "---- BKZ_QP status ----\n";   cerr << "elapsed time: ";   PrintTime(cerr, tt-StartTime);   cerr << ", enum time: ";   PrintTime(cerr, enum_time);   cerr << ", iter: " << NumIterations << "\n";   cerr << "triv: " << NumTrivial;   cerr << ", nontriv: " << NumNonTrivial;   cerr << ", no ops: " << NumNoOps;   cerr << ", rank: " << m;   cerr << ", swaps: " << NumSwaps << "\n";   ZZ t1;   long i;   double prodlen = 0;   for (i = 1; i <= m; i++) {      InnerProduct(t1, B(i), B(i));      if (!IsZero(t1))         prodlen += log(t1);   }   cerr << "log of prod of lengths: " << prodlen/(2.0*log(2.0)) << "\n";   if (LLLDumpFile) {      cerr << "dumping to " << LLLDumpFile << "...";      ofstream f;      OpenWrite(f, LLLDumpFile);            f << "[";      for (i = 1; i <= m; i++) {         f << B(i) << "\n";      }      f << "]\n";      f.close();      cerr << "\n";   }   LastTime = tt;   }staticlong BKZ_QP(mat_ZZ& BB, mat_ZZ* UU, quad_float delta,          long beta, long prune, LLLCheckFct check){   long m = BB.NumRows();   long n = BB.NumCols();   long m_orig = m;      long i, j;   ZZ MU;   quad_float t1;   ZZ T1;   quad_float *tp;   init_red_fudge();   mat_ZZ B;   B = BB;   B.SetDims(m+1, n);   quad_float **B1;  // approximates B   typedef quad_float *quad_floatptr;   B1 = NTL_NEW_OP quad_floatptr[m+2];   if (!B1) Error("BKZ_QP: out of memory");   for (i = 1; i <= m+1; i++) {      B1[i] = NTL_NEW_OP quad_float[n+1];      if (!B1[i]) Error("BKZ_QP: out of memory");   }   quad_float **mu;   mu = NTL_NEW_OP quad_floatptr[m+2];   if (!mu) Error("BKZ_QP: out of memory");   for (i = 1; i <= m+1; i++) {      mu[i] = NTL_NEW_OP quad_float[m+1];      if (!mu[i]) Error("BKZ_QP: out of memory");   }   quad_float *c; // squared lengths of Gramm-Schmidt basis vectors   c = NTL_NEW_OP quad_float[m+2];   if (!c) Error("BKZ_QP: out of memory");   quad_float *b; // squared lengths of basis vectors   b = NTL_NEW_OP quad_float[m+2];   if (!b) Error("BKZ_QP: out of memory");   quad_float cbar;   quad_float *ctilda;   ctilda = NTL_NEW_OP quad_float[m+2];   if (!ctilda) Error("BKZ_QP: out of memory");   quad_float *vvec;   vvec = NTL_NEW_OP quad_float[m+2];   if (!vvec) Error("BKZ_QP: out of memory");   quad_float *yvec;   yvec = NTL_NEW_OP quad_float[m+2];   if (!yvec) Error("BKZ_QP: out of memory");   quad_float *uvec;   uvec = NTL_NEW_OP quad_float[m+2];   if (!uvec) Error("BKZ_QP: out of memory");   quad_float *utildavec;   utildavec = NTL_NEW_OP quad_float[m+2];   if (!utildavec) Error("BKZ_QP: out of memory");   long *Deltavec;   Deltavec = NTL_NEW_OP long[m+2];   if (!Deltavec) Error("BKZ_QP: out of memory");   long *deltavec;   deltavec = NTL_NEW_OP long[m+2];   if (!deltavec) Error("BKZ_QP: out of memory");   mat_ZZ Ulocal;   mat_ZZ *U;   if (UU) {      Ulocal.SetDims(m+1, m);      for (i = 1; i <= m; i++)         conv(Ulocal(i, i), 1);      U = &Ulocal;   }   else      U = 0;   long quit;   long new_m;   long z, jj, kk;   long s, t;   long h;   quad_float eta;   for (i = 1; i <=m; i++)      for (j = 1; j <= n; j++)          conv(B1[i][j], B(i, j));            for (i = 1; i <= m; i++) {      b[i] = InnerProduct(B1[i], B1[i], n);      if (!IsFinite(&b[i]))         Error("BKZ_FD: numbers too big...use BKZ_XD");   }   // cerr << "\n";   // cerr << "first LLL\n";   m = ll_LLL_QP(B, U, delta, 0, check, B1, mu, b, c, m, 1, quit);   double tt;   double enum_time = 0;   long NumIterations = 0;   long NumTrivial = 0;   long NumNonTrivial = 0;   long NumNoOps = 0;   long verb = verbose;   verbose = 0;   long clean = 1;   if (m < m_orig) {      for (i = m_orig+1; i >= m+2; i--) {         // swap i, i-1         swap(B(i), B(i-1));         if (U) swap((*U)(i), (*U)(i-1));      }   }   if (!quit && m > 1) {      // cerr << "continuing\n";      if (beta > m) beta = m;      if (prune > 0)         ComputeBKZConstant(beta, prune);      z = 0;      jj = 0;         while (z < m-1) {         jj++;         kk = min(jj+beta-1, m);            if (jj == m) {            jj = 1;            kk = beta;            clean = 1;         }         if (verb) {            tt = GetTime();            if (tt > LastTime + LLLStatusInterval)               BKZStatus(tt, enum_time, NumIterations, NumTrivial,                         NumNonTrivial, NumNoOps, m, B);         }            // ENUM         double tt1;         if (verb) {            tt1 = GetTime();         }         if (prune > 0)            ComputeBKZThresh(&c[jj], kk-jj+1);            cbar = c[jj];         utildavec[jj] = uvec[jj] = 1;            yvec[jj] = vvec[jj] = 0;         Deltavec[jj] = 0;               s = t = jj;         deltavec[jj] = 1;            for (i = jj+1; i <= kk+1; i++) {            ctilda[i] = uvec[i] = utildavec[i] = yvec[i] = 0;            Deltavec[i] = 0;            vvec[i] = 0;            deltavec[i] = 1;         }         long enum_cnt = 0;            while (t <= kk) {            if (verb) {               enum_cnt++;               if (enum_cnt > 100000) {                  enum_cnt = 0;                  tt = GetTime();                  if (tt > LastTime + LLLStatusInterval) {                     enum_time += tt - tt1;                     tt1 = tt;                     BKZStatus(tt, enum_time, NumIterations, NumTrivial,                               NumNonTrivial, NumNoOps, m, B);                  }               }            }            ctilda[t] = ctilda[t+1] +                (yvec[t]+utildavec[t])*(yvec[t]+utildavec[t])*c[t];               if (prune > 0 && t > jj) {               eta = BKZThresh(t-jj);            }            else               eta = 0;            if (ctilda[t] < cbar - eta) {               if (t > jj) {                  t--;                  t1 = 0;                  for (i = t+1; i <= s; i++) {                     t1 += utildavec[i]*mu[i][t];                  }                  yvec[t] = t1;                  t1 = -t1;                  if (t1 >= 0)                     t1 = ceil(t1-0.5);                  else                     t1 = floor(t1+0.5);                  utildavec[t] = vvec[t] = t1;                  Deltavec[t] = 0;                  if (utildavec[t] > -yvec[t])                      deltavec[t] = -1;                  else                     deltavec[t] = 1;               }               else {                  cbar = ctilda[jj];                  for (i = jj; i <= kk; i++) {                     uvec[i] = utildavec[i];                  }               }            }            else {               t++;               s = max(s, t);               if (t < s) Deltavec[t] = -Deltavec[t];               if (Deltavec[t]*deltavec[t] >= 0) Deltavec[t] += deltavec[t];               utildavec[t] = vvec[t] + Deltavec[t];            }         }         if (verb) {            tt1 = GetTime() - tt1;            enum_time += tt1;         }         NumIterations++;         h = min(kk+1, m);            if ((delta-8*red_fudge)*c[jj] > cbar) {            clean = 0;            // we treat the case that the new vector is b_s (jj < s <= kk)            // as a special case that appears to occur most of the time.               s = 0;            for (i = jj+1; i <= kk; i++) {               if (uvec[i] != 0) {                  if (s == 0)                     s = i;                  else                     s = -1;               }            }               if (s == 0) Error("BKZ_QP: internal error");               if (s > 0) {               // special case               NumTrivial++;                  for (i = s; i > jj; i--) {                  // swap i, i-1                  swap(B(i-1), B(i));                  if (U) swap((*U)(i-1), (*U)(i));                  tp = B1[i-1]; B1[i-1] = B1[i]; B1[i] = tp;                  t1 = b[i-1]; b[i-1] = b[i]; b[i] = t1;               }                  // cerr << "special case\n";               new_m = ll_LLL_QP(B, U, delta, 0, check,                                 B1, mu, b, c, h, jj, quit);               if (new_m != h) Error("BKZ_QP: internal error");               if (quit) break;            }            else {               // the general case               NumNonTrivial++;                  for (i = 1; i <= n; i++) conv(B(m+1, i), 0);               if (U) {                  for (i = 1; i <= m_orig; i++)                     conv((*U)(m+1, i), 0);               }               for (i = jj; i <= kk; i++) {                  if (uvec[i] == 0) continue;                  conv(MU, uvec[i]);                  RowTransform2(B(m+1), B(i), MU);                  if (U) RowTransform2((*U)(m+1), (*U)(i), MU);               }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -