📄 mat_zz_p.c
字号:
long n = A.NumRows(); if (A.NumCols() != n) Error("inv: nonsquare matrix"); if (n == 0) { set(d); X.SetDims(0, 0); return; } long i, j, k, pos; ZZ t1, t2; ZZ *x, *y; const ZZ& p = ZZ_p::modulus(); vec_ZZVec M; sqr(t1, p); mul(t1, t1, n); M.SetLength(n); for (i = 0; i < n; i++) { M[i].SetSize(2*n, t1.size()); for (j = 0; j < n; j++) { M[i][j] = rep(A[i][j]); clear(M[i][n+j]); } set(M[i][n+i]); } ZZ det; set(det); for (k = 0; k < n; k++) { pos = -1; for (i = k; i < n; i++) { rem(t1, M[i][k], p); M[i][k] = t1; if (pos == -1 && !IsZero(t1)) { pos = i; } } if (pos != -1) { if (k != pos) { swap(M[pos], M[k]); NegateMod(det, det, p); } MulMod(det, det, M[k][k], p); // make M[k, k] == -1 mod p, and make row k reduced InvMod(t1, M[k][k], p); NegateMod(t1, t1, p); for (j = k+1; j < 2*n; j++) { rem(t2, M[k][j], p); MulMod(M[k][j], t2, t1, p); } for (i = k+1; i < n; i++) { // M[i] = M[i] + M[k]*M[i,k] t1 = M[i][k]; // this is already reduced x = M[i].elts() + (k+1); y = M[k].elts() + (k+1); for (j = k+1; j < 2*n; j++, x++, y++) { // *x = *x + (*y)*t1 mul(t2, *y, t1); add(*x, *x, t2); } } } else { clear(d); return; } } X.SetDims(n, n); for (k = 0; k < n; k++) { for (i = n-1; i >= 0; i--) { clear(t1); for (j = i+1; j < n; j++) { mul(t2, rep(X[j][k]), M[i][j]); add(t1, t1, t2); } sub(t1, t1, M[i][n+k]); conv(X[i][k], t1); } } conv(d, det);}long gauss(mat_ZZ_p& M_in, long w){ long k, l; long i, j; long pos; ZZ t1, t2, t3; ZZ *x, *y; long n = M_in.NumRows(); long m = M_in.NumCols(); if (w < 0 || w > m) Error("gauss: bad args"); const ZZ& p = ZZ_p::modulus(); vec_ZZVec M; sqr(t1, p); mul(t1, t1, n); M.SetLength(n); for (i = 0; i < n; i++) { M[i].SetSize(m, t1.size()); for (j = 0; j < m; j++) { M[i][j] = rep(M_in[i][j]); } } l = 0; for (k = 0; k < w && l < n; k++) { pos = -1; for (i = l; i < n; i++) { rem(t1, M[i][k], p); M[i][k] = t1; if (pos == -1 && !IsZero(t1)) { pos = i; } } if (pos != -1) { swap(M[pos], M[l]); InvMod(t3, M[l][k], p); NegateMod(t3, t3, p); for (j = k+1; j < m; j++) { rem(M[l][j], M[l][j], p); } for (i = l+1; i < n; i++) { // M[i] = M[i] + M[l]*M[i,k]*t3 MulMod(t1, M[i][k], t3, p); clear(M[i][k]); x = M[i].elts() + (k+1); y = M[l].elts() + (k+1); for (j = k+1; j < m; j++, x++, y++) { // *x = *x + (*y)*t1 mul(t2, *y, t1); add(t2, t2, *x); *x = t2; } } l++; } } for (i = 0; i < n; i++) for (j = 0; j < m; j++) conv(M_in[i][j], M[i][j]); return l;}long gauss(mat_ZZ_p& M){ return gauss(M, M.NumCols());}void image(mat_ZZ_p& X, const mat_ZZ_p& A){ mat_ZZ_p M; M = A; long r = gauss(M); M.SetDims(r, M.NumCols()); X = M;}void kernel(mat_ZZ_p& X, const mat_ZZ_p& A){ long m = A.NumRows(); long n = A.NumCols(); mat_ZZ_p M; long r; transpose(M, A); r = gauss(M); X.SetDims(m-r, m); long i, j, k, s; ZZ t1, t2; ZZ_p T3; vec_long D; D.SetLength(m); for (j = 0; j < m; j++) D[j] = -1; vec_ZZ_p inverses; inverses.SetLength(m); j = -1; for (i = 0; i < r; i++) { do { j++; } while (IsZero(M[i][j])); D[j] = i; inv(inverses[j], M[i][j]); } for (k = 0; k < m-r; k++) { vec_ZZ_p& v = X[k]; long pos = 0; for (j = m-1; j >= 0; j--) { if (D[j] == -1) { if (pos == k) set(v[j]); else clear(v[j]); pos++; } else { i = D[j]; clear(t1); for (s = j+1; s < m; s++) { mul(t2, rep(v[s]), rep(M[i][s])); add(t1, t1, t2); } conv(T3, t1); mul(T3, T3, inverses[j]); negate(v[j], T3); } } }} void mul(mat_ZZ_p& X, const mat_ZZ_p& A, const ZZ_p& b_in){ NTL_ZZ_pRegister(b); b = b_in; long n = A.NumRows(); long m = A.NumCols(); X.SetDims(n, m); long i, j; for (i = 0; i < n; i++) for (j = 0; j < m; j++) mul(X[i][j], A[i][j], b);} void mul(mat_ZZ_p& X, const mat_ZZ_p& A, long b_in){ NTL_ZZ_pRegister(b); b = b_in; long n = A.NumRows(); long m = A.NumCols(); X.SetDims(n, m); long i, j; for (i = 0; i < n; i++) for (j = 0; j < m; j++) mul(X[i][j], A[i][j], b);}void diag(mat_ZZ_p& X, long n, const ZZ_p& d_in) { ZZ_p d = d_in; X.SetDims(n, n); long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) if (i == j) X(i, j) = d; else clear(X(i, j)); } long IsDiag(const mat_ZZ_p& A, long n, const ZZ_p& d){ if (A.NumRows() != n || A.NumCols() != n) return 0; long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) if (i != j) { if (!IsZero(A(i, j))) return 0; } else { if (A(i, j) != d) return 0; } return 1;}long IsZero(const mat_ZZ_p& a){ long n = a.NumRows(); long i; for (i = 0; i < n; i++) if (!IsZero(a[i])) return 0; return 1;}void clear(mat_ZZ_p& x){ long n = x.NumRows(); long i; for (i = 0; i < n; i++) clear(x[i]);}mat_ZZ_p operator+(const mat_ZZ_p& a, const mat_ZZ_p& b){ mat_ZZ_p res; add(res, a, b); NTL_OPT_RETURN(mat_ZZ_p, res);}mat_ZZ_p operator*(const mat_ZZ_p& a, const mat_ZZ_p& b){ mat_ZZ_p res; mul_aux(res, a, b); NTL_OPT_RETURN(mat_ZZ_p, res);}mat_ZZ_p operator-(const mat_ZZ_p& a, const mat_ZZ_p& b){ mat_ZZ_p res; sub(res, a, b); NTL_OPT_RETURN(mat_ZZ_p, res);}mat_ZZ_p operator-(const mat_ZZ_p& a){ mat_ZZ_p res; negate(res, a); NTL_OPT_RETURN(mat_ZZ_p, res);}vec_ZZ_p operator*(const mat_ZZ_p& a, const vec_ZZ_p& b){ vec_ZZ_p res; mul_aux(res, a, b); NTL_OPT_RETURN(vec_ZZ_p, res);}vec_ZZ_p operator*(const vec_ZZ_p& a, const mat_ZZ_p& b){ vec_ZZ_p res; mul_aux(res, a, b); NTL_OPT_RETURN(vec_ZZ_p, res);}void inv(mat_ZZ_p& X, const mat_ZZ_p& A){ ZZ_p d; inv(d, X, A); if (d == 0) Error("inv: non-invertible matrix");}void power(mat_ZZ_p& X, const mat_ZZ_p& A, const ZZ& e){ if (A.NumRows() != A.NumCols()) Error("power: non-square matrix"); if (e == 0) { ident(X, A.NumRows()); return; } mat_ZZ_p T1, T2; long i, k; k = NumBits(e); T1 = A; for (i = k-2; i >= 0; i--) { sqr(T2, T1); if (bit(e, i)) mul(T1, T2, A); else T1 = T2; } if (e < 0) inv(X, T1); else X = T1;}NTL_END_IMPL
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -