⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mat_zz_p.c

📁 密码大家Shoup写的数论算法c语言实现
💻 C
📖 第 1 页 / 共 2 页
字号:
   long n = A.NumRows();   if (A.NumCols() != n)      Error("inv: nonsquare matrix");   if (n == 0) {      set(d);      X.SetDims(0, 0);      return;   }   long i, j, k, pos;   ZZ t1, t2;   ZZ *x, *y;   const ZZ& p = ZZ_p::modulus();   vec_ZZVec M;   sqr(t1, p);   mul(t1, t1, n);   M.SetLength(n);   for (i = 0; i < n; i++) {      M[i].SetSize(2*n, t1.size());      for (j = 0; j < n; j++) {         M[i][j] = rep(A[i][j]);         clear(M[i][n+j]);      }      set(M[i][n+i]);   }   ZZ det;   set(det);   for (k = 0; k < n; k++) {      pos = -1;      for (i = k; i < n; i++) {         rem(t1, M[i][k], p);         M[i][k] = t1;         if (pos == -1 && !IsZero(t1)) {            pos = i;         }      }      if (pos != -1) {         if (k != pos) {            swap(M[pos], M[k]);            NegateMod(det, det, p);         }         MulMod(det, det, M[k][k], p);         // make M[k, k] == -1 mod p, and make row k reduced         InvMod(t1, M[k][k], p);         NegateMod(t1, t1, p);         for (j = k+1; j < 2*n; j++) {            rem(t2, M[k][j], p);            MulMod(M[k][j], t2, t1, p);         }         for (i = k+1; i < n; i++) {            // M[i] = M[i] + M[k]*M[i,k]            t1 = M[i][k];   // this is already reduced            x = M[i].elts() + (k+1);            y = M[k].elts() + (k+1);            for (j = k+1; j < 2*n; j++, x++, y++) {               // *x = *x + (*y)*t1               mul(t2, *y, t1);               add(*x, *x, t2);            }         }      }      else {         clear(d);         return;      }   }   X.SetDims(n, n);   for (k = 0; k < n; k++) {      for (i = n-1; i >= 0; i--) {         clear(t1);         for (j = i+1; j < n; j++) {            mul(t2, rep(X[j][k]), M[i][j]);            add(t1, t1, t2);         }         sub(t1, t1, M[i][n+k]);         conv(X[i][k], t1);      }   }   conv(d, det);}long gauss(mat_ZZ_p& M_in, long w){   long k, l;   long i, j;   long pos;   ZZ t1, t2, t3;   ZZ *x, *y;   long n = M_in.NumRows();   long m = M_in.NumCols();   if (w < 0 || w > m)      Error("gauss: bad args");   const ZZ& p = ZZ_p::modulus();   vec_ZZVec M;   sqr(t1, p);   mul(t1, t1, n);   M.SetLength(n);   for (i = 0; i < n; i++) {      M[i].SetSize(m, t1.size());      for (j = 0; j < m; j++) {         M[i][j] = rep(M_in[i][j]);      }   }   l = 0;   for (k = 0; k < w && l < n; k++) {      pos = -1;      for (i = l; i < n; i++) {         rem(t1, M[i][k], p);         M[i][k] = t1;         if (pos == -1 && !IsZero(t1)) {            pos = i;         }      }      if (pos != -1) {         swap(M[pos], M[l]);         InvMod(t3, M[l][k], p);         NegateMod(t3, t3, p);         for (j = k+1; j < m; j++) {            rem(M[l][j], M[l][j], p);         }         for (i = l+1; i < n; i++) {            // M[i] = M[i] + M[l]*M[i,k]*t3            MulMod(t1, M[i][k], t3, p);            clear(M[i][k]);            x = M[i].elts() + (k+1);            y = M[l].elts() + (k+1);            for (j = k+1; j < m; j++, x++, y++) {               // *x = *x + (*y)*t1               mul(t2, *y, t1);               add(t2, t2, *x);               *x = t2;            }         }         l++;      }   }      for (i = 0; i < n; i++)      for (j = 0; j < m; j++)         conv(M_in[i][j], M[i][j]);   return l;}long gauss(mat_ZZ_p& M){   return gauss(M, M.NumCols());}void image(mat_ZZ_p& X, const mat_ZZ_p& A){   mat_ZZ_p M;   M = A;   long r = gauss(M);   M.SetDims(r, M.NumCols());   X = M;}void kernel(mat_ZZ_p& X, const mat_ZZ_p& A){   long m = A.NumRows();   long n = A.NumCols();   mat_ZZ_p M;   long r;   transpose(M, A);   r = gauss(M);   X.SetDims(m-r, m);   long i, j, k, s;   ZZ t1, t2;   ZZ_p T3;   vec_long D;   D.SetLength(m);   for (j = 0; j < m; j++) D[j] = -1;   vec_ZZ_p inverses;   inverses.SetLength(m);   j = -1;   for (i = 0; i < r; i++) {      do {         j++;      } while (IsZero(M[i][j]));      D[j] = i;      inv(inverses[j], M[i][j]);    }   for (k = 0; k < m-r; k++) {      vec_ZZ_p& v = X[k];      long pos = 0;      for (j = m-1; j >= 0; j--) {         if (D[j] == -1) {            if (pos == k)               set(v[j]);            else               clear(v[j]);            pos++;         }         else {            i = D[j];            clear(t1);            for (s = j+1; s < m; s++) {               mul(t2, rep(v[s]), rep(M[i][s]));               add(t1, t1, t2);            }            conv(T3, t1);            mul(T3, T3, inverses[j]);            negate(v[j], T3);         }      }   }}   void mul(mat_ZZ_p& X, const mat_ZZ_p& A, const ZZ_p& b_in){   NTL_ZZ_pRegister(b);   b = b_in;   long n = A.NumRows();   long m = A.NumCols();   X.SetDims(n, m);   long i, j;   for (i = 0; i < n; i++)      for (j = 0; j < m; j++)         mul(X[i][j], A[i][j], b);}   void mul(mat_ZZ_p& X, const mat_ZZ_p& A, long b_in){   NTL_ZZ_pRegister(b);   b = b_in;   long n = A.NumRows();   long m = A.NumCols();   X.SetDims(n, m);   long i, j;   for (i = 0; i < n; i++)      for (j = 0; j < m; j++)         mul(X[i][j], A[i][j], b);}void diag(mat_ZZ_p& X, long n, const ZZ_p& d_in)  {     ZZ_p d = d_in;   X.SetDims(n, n);     long i, j;       for (i = 1; i <= n; i++)        for (j = 1; j <= n; j++)           if (i == j)              X(i, j) = d;           else              clear(X(i, j));  } long IsDiag(const mat_ZZ_p& A, long n, const ZZ_p& d){   if (A.NumRows() != n || A.NumCols() != n)      return 0;   long i, j;   for (i = 1; i <= n; i++)      for (j = 1; j <= n; j++)         if (i != j) {            if (!IsZero(A(i, j))) return 0;         }         else {            if (A(i, j) != d) return 0;         }   return 1;}long IsZero(const mat_ZZ_p& a){   long n = a.NumRows();   long i;   for (i = 0; i < n; i++)      if (!IsZero(a[i]))         return 0;   return 1;}void clear(mat_ZZ_p& x){   long n = x.NumRows();   long i;   for (i = 0; i < n; i++)      clear(x[i]);}mat_ZZ_p operator+(const mat_ZZ_p& a, const mat_ZZ_p& b){   mat_ZZ_p res;   add(res, a, b);   NTL_OPT_RETURN(mat_ZZ_p, res);}mat_ZZ_p operator*(const mat_ZZ_p& a, const mat_ZZ_p& b){   mat_ZZ_p res;   mul_aux(res, a, b);   NTL_OPT_RETURN(mat_ZZ_p, res);}mat_ZZ_p operator-(const mat_ZZ_p& a, const mat_ZZ_p& b){   mat_ZZ_p res;   sub(res, a, b);   NTL_OPT_RETURN(mat_ZZ_p, res);}mat_ZZ_p operator-(const mat_ZZ_p& a){   mat_ZZ_p res;   negate(res, a);   NTL_OPT_RETURN(mat_ZZ_p, res);}vec_ZZ_p operator*(const mat_ZZ_p& a, const vec_ZZ_p& b){   vec_ZZ_p res;   mul_aux(res, a, b);   NTL_OPT_RETURN(vec_ZZ_p, res);}vec_ZZ_p operator*(const vec_ZZ_p& a, const mat_ZZ_p& b){   vec_ZZ_p res;   mul_aux(res, a, b);   NTL_OPT_RETURN(vec_ZZ_p, res);}void inv(mat_ZZ_p& X, const mat_ZZ_p& A){   ZZ_p d;   inv(d, X, A);   if (d == 0) Error("inv: non-invertible matrix");}void power(mat_ZZ_p& X, const mat_ZZ_p& A, const ZZ& e){   if (A.NumRows() != A.NumCols()) Error("power: non-square matrix");   if (e == 0) {      ident(X, A.NumRows());      return;   }   mat_ZZ_p T1, T2;   long i, k;   k = NumBits(e);   T1 = A;   for (i = k-2; i >= 0; i--) {      sqr(T2, T1);      if (bit(e, i))         mul(T1, T2, A);      else         T1 = T2;   }   if (e < 0)      inv(X, T1);   else      X = T1;}NTL_END_IMPL

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -