⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mat_zz_p.c

📁 密码大家Shoup写的数论算法c语言实现
💻 C
📖 第 1 页 / 共 2 页
字号:
#include <NTL/mat_ZZ_p.h>#include <NTL/vec_ZZVec.h>#include <NTL/vec_long.h>#include <NTL/new.h>NTL_START_IMPLNTL_matrix_impl(ZZ_p,vec_ZZ_p,vec_vec_ZZ_p,mat_ZZ_p)NTL_io_matrix_impl(ZZ_p,vec_ZZ_p,vec_vec_ZZ_p,mat_ZZ_p)NTL_eq_matrix_impl(ZZ_p,vec_ZZ_p,vec_vec_ZZ_p,mat_ZZ_p)  void add(mat_ZZ_p& X, const mat_ZZ_p& A, const mat_ZZ_p& B)  {     long n = A.NumRows();     long m = A.NumCols();       if (B.NumRows() != n || B.NumCols() != m)         Error("matrix add: dimension mismatch");       X.SetDims(n, m);       long i, j;     for (i = 1; i <= n; i++)         for (j = 1; j <= m; j++)           add(X(i,j), A(i,j), B(i,j));  }    void sub(mat_ZZ_p& X, const mat_ZZ_p& A, const mat_ZZ_p& B)  {     long n = A.NumRows();     long m = A.NumCols();       if (B.NumRows() != n || B.NumCols() != m)        Error("matrix sub: dimension mismatch");       X.SetDims(n, m);       long i, j;     for (i = 1; i <= n; i++)        for (j = 1; j <= m; j++)           sub(X(i,j), A(i,j), B(i,j));  }  void negate(mat_ZZ_p& X, const mat_ZZ_p& A)  {     long n = A.NumRows();     long m = A.NumCols();         X.SetDims(n, m);       long i, j;     for (i = 1; i <= n; i++)        for (j = 1; j <= m; j++)           negate(X(i,j), A(i,j));  }    void mul_aux(mat_ZZ_p& X, const mat_ZZ_p& A, const mat_ZZ_p& B)  {     long n = A.NumRows();     long l = A.NumCols();     long m = B.NumCols();       if (l != B.NumRows())        Error("matrix mul: dimension mismatch");       X.SetDims(n, m);       long i, j, k;     ZZ acc, tmp;       for (i = 1; i <= n; i++) {        for (j = 1; j <= m; j++) {           clear(acc);           for(k = 1; k <= l; k++) {              mul(tmp, rep(A(i,k)), rep(B(k,j)));              add(acc, acc, tmp);           }           conv(X(i,j), acc);        }     }  }      void mul(mat_ZZ_p& X, const mat_ZZ_p& A, const mat_ZZ_p& B)  {     if (&X == &A || &X == &B) {        mat_ZZ_p tmp;        mul_aux(tmp, A, B);        X = tmp;     }     else        mul_aux(X, A, B);  }      staticvoid mul_aux(vec_ZZ_p& x, const mat_ZZ_p& A, const vec_ZZ_p& b)  {     long n = A.NumRows();     long l = A.NumCols();       if (l != b.length())        Error("matrix mul: dimension mismatch");       x.SetLength(n);       long i, k;     ZZ acc, tmp;       for (i = 1; i <= n; i++) {        clear(acc);        for (k = 1; k <= l; k++) {           mul(tmp, rep(A(i,k)), rep(b(k)));           add(acc, acc, tmp);        }        conv(x(i), acc);     }  }      void mul(vec_ZZ_p& x, const mat_ZZ_p& A, const vec_ZZ_p& b)  {     if (&b == &x || A.position(b) != -1) {      vec_ZZ_p tmp;      mul_aux(tmp, A, b);      x = tmp;   }   else      mul_aux(x, A, b);}  staticvoid mul_aux(vec_ZZ_p& x, const vec_ZZ_p& a, const mat_ZZ_p& B)  {     long n = B.NumRows();     long l = B.NumCols();       if (n != a.length())        Error("matrix mul: dimension mismatch");       x.SetLength(l);       long i, k;     ZZ acc, tmp;       for (i = 1; i <= l; i++) {        clear(acc);        for (k = 1; k <= n; k++) {           mul(tmp, rep(a(k)), rep(B(k,i)));         add(acc, acc, tmp);        }        conv(x(i), acc);     }  }  void mul(vec_ZZ_p& x, const vec_ZZ_p& a, const mat_ZZ_p& B){   if (&a == &x || B.position(a) != -1) {      vec_ZZ_p tmp;      mul_aux(tmp, a, B);      x = tmp;   }   else      mul_aux(x, a, B);}       void ident(mat_ZZ_p& X, long n)  {     X.SetDims(n, n);     long i, j;       for (i = 1; i <= n; i++)        for (j = 1; j <= n; j++)           if (i == j)              set(X(i, j));           else              clear(X(i, j));  } void determinant(ZZ_p& d, const mat_ZZ_p& M_in){   long k, n;   long i, j;   long pos;   ZZ t1, t2;   ZZ *x, *y;   const ZZ& p = ZZ_p::modulus();   n = M_in.NumRows();   if (M_in.NumCols() != n)      Error("determinant: nonsquare matrix");   if (n == 0) {      set(d);      return;   }   vec_ZZVec M;   sqr(t1, p);   mul(t1, t1, n);   M.SetLength(n);   for (i = 0; i < n; i++) {      M[i].SetSize(n, t1.size());      for (j = 0; j < n; j++)         M[i][j] = rep(M_in[i][j]);   }   ZZ det;   set(det);   for (k = 0; k < n; k++) {      pos = -1;      for (i = k; i < n; i++) {         rem(t1, M[i][k], p);         M[i][k] = t1;         if (pos == -1 && !IsZero(t1))            pos = i;      }      if (pos != -1) {         if (k != pos) {            swap(M[pos], M[k]);            NegateMod(det, det, p);         }         MulMod(det, det, M[k][k], p);         // make M[k, k] == -1 mod p, and make row k reduced         InvMod(t1, M[k][k], p);         NegateMod(t1, t1, p);         for (j = k+1; j < n; j++) {            rem(t2, M[k][j], p);            MulMod(M[k][j], t2, t1, p);         }         for (i = k+1; i < n; i++) {            // M[i] = M[i] + M[k]*M[i,k]            t1 = M[i][k];   // this is already reduced            x = M[i].elts() + (k+1);            y = M[k].elts() + (k+1);            for (j = k+1; j < n; j++, x++, y++) {               // *x = *x + (*y)*t1               mul(t2, *y, t1);               add(*x, *x, t2);            }         }      }      else {         clear(d);         return;      }   }   conv(d, det);}long IsIdent(const mat_ZZ_p& A, long n){   if (A.NumRows() != n || A.NumCols() != n)      return 0;   long i, j;   for (i = 1; i <= n; i++)      for (j = 1; j <= n; j++)         if (i != j) {            if (!IsZero(A(i, j))) return 0;         }         else {            if (!IsOne(A(i, j))) return 0;         }   return 1;}            void transpose(mat_ZZ_p& X, const mat_ZZ_p& A){   long n = A.NumRows();   long m = A.NumCols();   long i, j;   if (&X == & A) {      if (n == m)         for (i = 1; i <= n; i++)            for (j = i+1; j <= n; j++)               swap(X(i, j), X(j, i));      else {         mat_ZZ_p tmp;         tmp.SetDims(m, n);         for (i = 1; i <= n; i++)            for (j = 1; j <= m; j++)               tmp(j, i) = A(i, j);         X.kill();         X = tmp;      }   }   else {      X.SetDims(m, n);      for (i = 1; i <= n; i++)         for (j = 1; j <= m; j++)            X(j, i) = A(i, j);   }}   void solve(ZZ_p& d, vec_ZZ_p& X,            const mat_ZZ_p& A, const vec_ZZ_p& b){   long n = A.NumRows();   if (A.NumCols() != n)      Error("solve: nonsquare matrix");   if (b.length() != n)      Error("solve: dimension mismatch");   if (n == 0) {      set(d);      X.SetLength(0);      return;   }   long i, j, k, pos;   ZZ t1, t2;   ZZ *x, *y;   const ZZ& p = ZZ_p::modulus();   vec_ZZVec M;   sqr(t1, p);   mul(t1, t1, n);   M.SetLength(n);   for (i = 0; i < n; i++) {      M[i].SetSize(n+1, t1.size());      for (j = 0; j < n; j++)          M[i][j] = rep(A[j][i]);      M[i][n] = rep(b[i]);   }   ZZ det;   set(det);   for (k = 0; k < n; k++) {      pos = -1;      for (i = k; i < n; i++) {         rem(t1, M[i][k], p);         M[i][k] = t1;         if (pos == -1 && !IsZero(t1)) {            pos = i;         }      }      if (pos != -1) {         if (k != pos) {            swap(M[pos], M[k]);            NegateMod(det, det, p);         }         MulMod(det, det, M[k][k], p);         // make M[k, k] == -1 mod p, and make row k reduced         InvMod(t1, M[k][k], p);         NegateMod(t1, t1, p);         for (j = k+1; j <= n; j++) {            rem(t2, M[k][j], p);            MulMod(M[k][j], t2, t1, p);         }         for (i = k+1; i < n; i++) {            // M[i] = M[i] + M[k]*M[i,k]            t1 = M[i][k];   // this is already reduced            x = M[i].elts() + (k+1);            y = M[k].elts() + (k+1);            for (j = k+1; j <= n; j++, x++, y++) {               // *x = *x + (*y)*t1               mul(t2, *y, t1);               add(*x, *x, t2);            }         }      }      else {         clear(d);         return;      }   }   X.SetLength(n);   for (i = n-1; i >= 0; i--) {      clear(t1);      for (j = i+1; j < n; j++) {         mul(t2, rep(X[j]), M[i][j]);         add(t1, t1, t2);      }      sub(t1, t1, M[i][n]);      conv(X[i], t1);   }   conv(d, det);}void inv(ZZ_p& d, mat_ZZ_p& X, const mat_ZZ_p& A){

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -