📄 zz.c
字号:
GG ( d, a, b, c, in[14], S22, 3275163606UL); /* 26 */ GG ( c, d, a, b, in[ 3], S23, 4107603335UL); /* 27 */ GG ( b, c, d, a, in[ 8], S24, 1163531501UL); /* 28 */ GG ( a, b, c, d, in[13], S21, 2850285829UL); /* 29 */ GG ( d, a, b, c, in[ 2], S22, 4243563512UL); /* 30 */ GG ( c, d, a, b, in[ 7], S23, 1735328473UL); /* 31 */ GG ( b, c, d, a, in[12], S24, 2368359562UL); /* 32 */ /* Round 3 */#define S31 4#define S32 11#define S33 16#define S34 23 HH ( a, b, c, d, in[ 5], S31, 4294588738UL); /* 33 */ HH ( d, a, b, c, in[ 8], S32, 2272392833UL); /* 34 */ HH ( c, d, a, b, in[11], S33, 1839030562UL); /* 35 */ HH ( b, c, d, a, in[14], S34, 4259657740UL); /* 36 */ HH ( a, b, c, d, in[ 1], S31, 2763975236UL); /* 37 */ HH ( d, a, b, c, in[ 4], S32, 1272893353UL); /* 38 */ HH ( c, d, a, b, in[ 7], S33, 4139469664UL); /* 39 */ HH ( b, c, d, a, in[10], S34, 3200236656UL); /* 40 */ HH ( a, b, c, d, in[13], S31, 681279174UL); /* 41 */ HH ( d, a, b, c, in[ 0], S32, 3936430074UL); /* 42 */ HH ( c, d, a, b, in[ 3], S33, 3572445317UL); /* 43 */ HH ( b, c, d, a, in[ 6], S34, 76029189UL); /* 44 */ HH ( a, b, c, d, in[ 9], S31, 3654602809UL); /* 45 */ HH ( d, a, b, c, in[12], S32, 3873151461UL); /* 46 */ HH ( c, d, a, b, in[15], S33, 530742520UL); /* 47 */ HH ( b, c, d, a, in[ 2], S34, 3299628645UL); /* 48 */ /* Round 4 */#define S41 6#define S42 10#define S43 15#define S44 21 II ( a, b, c, d, in[ 0], S41, 4096336452UL); /* 49 */ II ( d, a, b, c, in[ 7], S42, 1126891415UL); /* 50 */ II ( c, d, a, b, in[14], S43, 2878612391UL); /* 51 */ II ( b, c, d, a, in[ 5], S44, 4237533241UL); /* 52 */ II ( a, b, c, d, in[12], S41, 1700485571UL); /* 53 */ II ( d, a, b, c, in[ 3], S42, 2399980690UL); /* 54 */ II ( c, d, a, b, in[10], S43, 4293915773UL); /* 55 */ II ( b, c, d, a, in[ 1], S44, 2240044497UL); /* 56 */ II ( a, b, c, d, in[ 8], S41, 1873313359UL); /* 57 */ II ( d, a, b, c, in[15], S42, 4264355552UL); /* 58 */ II ( c, d, a, b, in[ 6], S43, 2734768916UL); /* 59 */ II ( b, c, d, a, in[13], S44, 1309151649UL); /* 60 */ II ( a, b, c, d, in[ 4], S41, 4149444226UL); /* 61 */ II ( d, a, b, c, in[11], S42, 3174756917UL); /* 62 */ II ( c, d, a, b, in[ 2], S43, 718787259UL); /* 63 */ II ( b, c, d, a, in[ 9], S44, 3951481745UL); /* 64 */ buf[0] = TRUNC32(buf[0] + a); buf[1] = TRUNC32(buf[1] + b); buf[2] = TRUNC32(buf[2] + c); buf[3] = TRUNC32(buf[3] + d);}/* * END RSA's md5 stuff * */staticvoid words_from_bytes(unsigned long *txtl, unsigned char *txtc, long n){ long i; unsigned long v; for (i = 0; i < n; i++) { v = txtc[4*i]; v += ((unsigned long) (txtc[4*i+1])) << 8; v += ((unsigned long) (txtc[4*i+2])) << 16; v += ((unsigned long) (txtc[4*i+3])) << 24; txtl[i] = v; }}static void bytes_from_words(unsigned char *txtc, unsigned long *txtl, long n){ long i; unsigned long v; for (i = 0; i < n; i++) { v = txtl[i]; txtc[4*i] = v & 255; v = v >> 8; txtc[4*i+1] = v & 255; v = v >> 8; txtc[4*i+2] = v & 255; v = v >> 8; txtc[4*i+3] = v & 255; }}staticvoid MD5_compress1(unsigned long *buf, unsigned char *in, long n){ unsigned long txtl[16]; unsigned char txtc[64]; long i, j, k; if (n < 0) n = 0; i = 0; while (i < n) { k = n-i; if (k > 64) k = 64; for (j = 0; j < k; j++) txtc[j] = in[i+j]; for (; j < 64; j++) txtc[j] = 0; words_from_bytes(txtl, txtc, 16); MD5_compress(buf, txtl); i += k; }}// the "cipherpunk" version of arc4 struct arc4_key{ unsigned char state[256]; unsigned char x; unsigned char y;};inlinevoid swap_byte(unsigned char *a, unsigned char *b){ unsigned char swapByte; swapByte = *a; *a = *b; *b = swapByte;}staticvoid prepare_key(unsigned char *key_data_ptr, long key_data_len, arc4_key *key){ unsigned char index1; unsigned char index2; unsigned char* state; long counter; state = &key->state[0]; for(counter = 0; counter < 256; counter++) state[counter] = counter; key->x = 0; key->y = 0; index1 = 0; index2 = 0; for(counter = 0; counter < 256; counter++) { index2 = (key_data_ptr[index1] + state[counter] + index2) & 255; swap_byte(&state[counter], &state[index2]); index1 = (index1 + 1) % key_data_len; } }staticvoid arc4(unsigned char *buffer_ptr, long buffer_len, arc4_key *key){ unsigned char x; unsigned char y; unsigned char* state; unsigned char xorIndex; long counter; x = key->x; y = key->y; state = &key->state[0]; for(counter = 0; counter < buffer_len; counter ++) { x = (x + 1) & 255; y = (state[x] + y) & 255; swap_byte(&state[x], &state[y]); xorIndex = (state[x] + state[y]) & 255; buffer_ptr[counter] = state[xorIndex]; } key->x = x; key->y = y;}// global state information for PRNGstatic long ran_initialized = 0;static arc4_key ran_key;static unsigned long default_md5_tab[16] = {744663023UL, 1011602954UL, 3163087192UL, 3383838527UL, 3305324122UL, 3197458079UL, 2266495600UL, 2760303563UL, 346234297UL, 1919920720UL, 1896169861UL, 2192176675UL, 2027150322UL, 2090160759UL, 2134858730UL, 1131796244UL};void build_arc4_tab(unsigned char *seed_bytes, const ZZ& s){ long nb = NumBytes(s); unsigned char *txt; typedef unsigned char u_char; txt = NTL_NEW_OP u_char[nb + 64]; if (!txt) Error("out of memory"); BytesFromZZ(txt, s, nb); bytes_from_words(txt+nb, default_md5_tab, 16); unsigned long buf[4]; MD5_default_IV(buf); long i; for (i = 0; i < 16; i++) { MD5_compress1(buf, txt, nb + 64); bytes_from_words(seed_bytes + 16*i, buf, 4); } delete [] txt;}void SetSeed(const ZZ& s){ unsigned char seed_bytes[256]; build_arc4_tab(seed_bytes, s); prepare_key(seed_bytes, 256, &ran_key); ran_initialized = 1;}static void ran_bytes(unsigned char *bytes, long n){ if (!ran_initialized) SetSeed(ZZ::zero()); arc4(bytes, n, &ran_key);}unsigned long RandomWord(){ unsigned char buf[NTL_BITS_PER_LONG/8]; long i; unsigned long res; ran_bytes(buf, NTL_BITS_PER_LONG/8); res = 0; for (i = NTL_BITS_PER_LONG/8 - 1; i >= 0; i--) { res = res << 8; res = res | buf[i]; } return res;}long RandomBits_long(long l){ if (l <= 0) return 0; if (l >= NTL_BITS_PER_LONG) Error("RandomBits: length too big"); unsigned char buf[NTL_BITS_PER_LONG/8]; unsigned long res; long i; long nb = (l+7)/8; ran_bytes(buf, nb); res = 0; for (i = nb - 1; i >= 0; i--) { res = res << 8; res = res | buf[i]; } return long(res & ((1UL << l)-1UL)); }unsigned long RandomBits_ulong(long l){ if (l <= 0) return 0; if (l > NTL_BITS_PER_LONG) Error("RandomBits: length too big"); unsigned char buf[NTL_BITS_PER_LONG/8]; unsigned long res; long i; long nb = (l+7)/8; ran_bytes(buf, nb); res = 0; for (i = nb - 1; i >= 0; i--) { res = res << 8; res = res | buf[i]; } if (l < NTL_BITS_PER_LONG) res = res & ((1UL << l)-1UL); return res;}long RandomLen_long(long l){ if (l <= 0) return 0; if (l == 1) return 1; if (l >= NTL_BITS_PER_LONG) Error("RandomLen: length too big"); return RandomBits_long(l-1) + (1L << (l-1)); }void RandomBits(ZZ& x, long l){ if (l <= 0) { x = 0; return; } if (l >= (1L << (NTL_BITS_PER_LONG-4))) Error("RandomBits: length too big"); long nb = (l+7)/8; static unsigned char *buf = 0; static long buf_len = 0; if (nb > buf_len) { if (buf) delete [] buf; buf_len = ((nb + 1023)/1024)*1024; // allocate in 1024-byte lots typedef unsigned char u_char; buf = NTL_NEW_OP u_char[buf_len]; if (!buf) Error("out of memory"); } ran_bytes(buf, nb); static ZZ res; ZZFromBytes(res, buf, nb); trunc(res, res, l); x = res;}void RandomLen(ZZ& x, long l){ if (l <= 0) { x = 0; return; } if (l == 1) { x = 1; return; } if (l >= (1L << (NTL_BITS_PER_LONG-4))) Error("RandomLen: length too big"); // pre-allocate space to avoid two allocations long nw = (l + NTL_ZZ_NBITS - 1)/NTL_ZZ_NBITS; x.SetSize(nw); RandomBits(x, l-1); SetBit(x, l-1);}const long RandomBndExcess = 8;void RandomBnd(ZZ& x, const ZZ& bnd){ if (bnd <= 1) { x = 0; return; } long k = NumBits(bnd); if (weight(bnd) == 1) { RandomBits(x, k-1); return; } long l = k + RandomBndExcess; static ZZ t, r, t1; do { RandomBits(t, l); rem(r, t, bnd); sub(t1, bnd, r); add(t, t, t1); } while (NumBits(t) > l); x = r;}long RandomBnd(long bnd){ if (bnd <= 1) return 0; long k = NumBits(bnd); if (((bnd - 1) & bnd) == 0) return RandomBits_long(k-1); long l = k + RandomBndExcess; if (l > NTL_BITS_PER_LONG-2) { static ZZ Bnd, res; Bnd = bnd; RandomBnd(res, Bnd); return to_long(res); } long t, r; do { t = RandomBits_long(l); r = t % bnd; } while (t + bnd - r > (1L << l)); return r;}// More prime generation stuff...staticdouble Log2(double x){ static double log2 = log(2.0); return log(x)/log2;}// Define p(k,t) to be the conditional probability that a random, odd, k-bit // number is composite, given that it passes t iterations of the // Miller-Rabin test.// This routine returns 0 or 1, and if it returns 1 then// p(k,t) <= 2^{-n}.// This basically encodes the estimates of Damgard, Landrock, and Pomerance;// it uses floating point arithmetic, but is coded in such a way// that its results should be correct, assuming that the log function// is computed with reasonable precision.// // It is assumed that k >= 3 and t >= 1; if this does not hold,// then 0 is returned.staticlong ErrBoundTest(long kk, long tt, long nn){ const double fudge = (1.0 + 1024.0/NTL_FDOUBLE_PRECISION); const double log2_3 = Log2(3.0); const double log2_7 = Log2(7.0); const double log2_20 = Log2(20.0); double k = kk; double t = tt; double n = nn; if (k < 3 || t < 1) return 0; if (n < 1) return 1; // the following test is largely academic if (9*t > NTL_FDOUBLE_PRECISION) Error("ErrBoundTest: t too big"); double log2_k = Log2(k); if ((n + log2_k)*fudge <= 2*t) return 1; if ((2*log2_k + 4.0 + n)*fudge <= 2*sqrt(k)) return 2; if ((t == 2 && k >= 88) || (3 <= t && 9*t <= k && k >= 21)) { if ((1.5*log2_k + t + 4.0 + n)*fudge <= 0.5*Log2(t) + 2*(sqrt(t*k))) return 3; } if (k <= 9*t && 4*t <= k && k >= 21) { if ( ((log2_3 + log2_7 + log2_k + n)*fudge <= log2_20 + 5*t) && ((log2_3 + (15.0/4.0)*log2_k + n)*fudge <= log2_7 + k/2 + 2*t) && ((2*log2_3 + 2 + log2_k + n)*fudge <= k/4 + 3*t) ) return 4; } if (4*t >= k && k >= 21) { if (((15.0/4.0)*log2_k + n)*fudge <= log2_7 + k/2 + 2*t) return 5; } return 0;}void GenPrime(ZZ& n, long k, long err){ if (k <= 1) Error("GenPrime: bad length"); if (k > (1L << 20)) Error("GenPrime: length too large"); if (err < 1) err = 1; if (err > 512) err = 512; if (k == 2) { if (RandomBnd(2)) n = 3; else n = 2; return; } long t; t = 1; while (!ErrBoundTest(k, t, err)) t++; RandomPrime(n, k, t);}long GenPrime_long(long k, long err){ if (k <= 1) Error("GenPrime: bad length"); if (k >= NTL_BITS_PER_LONG) Error("GenPrime: length too large"); if (err < 1) err = 1; if (err > 512) err = 512; if (k == 2) { if (RandomBnd(2)) return 3; else return 2; } long t; t = 1; while (!ErrBoundTest(k, t, err)) t++; return RandomPrime_long(k, t);}void GenGermainPrime(ZZ& n, long k, long err){ if (k <= 1) Error("GenGermainPrime: bad length"); if (k > (1L << 20)) Error("GenGermainPrime: length too large"); if (err < 1) err = 1; if (err > 512) err = 512; if (k == 2) { if (RandomBnd(2)) n = 3; else n = 2; return; } long prime_bnd = ComputePrimeBound(k); if (NumBits(prime_bnd) >= k/2) prime_bnd = (1L << (k/2-1)); ZZ two; two = 2; ZZ n1; PrimeSeq s; ZZ iter; iter = 0; for (;;) { iter++; RandomLen(n, k); if (!IsOdd(n)) add(n, n, 1); s.reset(3); long p; long sieve_passed = 1; p = s.next(); while (p && p < prime_bnd) { long r = rem(n, p); if (r == 0) { sieve_passed = 0; break; } // test if 2*r + 1 = 0 (mod p) if (r == p-r-1) { sieve_passed = 0; break; } p = s.next(); } if (!sieve_passed) continue; if (MillerWitness(n, two)) continue; // n1 = 2*n+1 mul(n1, n, 2); add(n1, n1, 1); if (MillerWitness(n1, two)) continue; // now do t M-R iterations...just to make sure // First compute the appropriate number of M-R iterations, t // The following computes t such that // p(k,t)*8/k <= 2^{-err}/(5*iter^{1.25}) // which suffices to get an overall error probability of 2^{-err}. // Note that this method has the advantage of not requiring // any assumptions on the density of Germain primes. long err1 = max(1, err + 7 + (5*NumBits(iter) + 3)/4 - NumBits(k)); long t; t = 1; while (!ErrBoundTest(k, t, err1)) t++; ZZ W; long MR_passed = 1; long i; for (i = 1; i <= t; i++) { do { RandomBnd(W, n); } while (W == 0); // W == 0 is not a useful candidate witness! if (MillerWitness(n, W)) { MR_passed = 0; break; } } if (MR_passed) break; }}long GenGermainPrime_long(long k, long err){ if (k >= NTL_BITS_PER_LONG-1) Error("GenGermainPrime_long: length too long"); ZZ n; GenGermainPrime(n, k, err); return to_long(n);}NTL_END_IMPL
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -