⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lzz_px1.c

📁 密码大家Shoup写的数论算法c语言实现
💻 C
📖 第 1 页 / 共 3 页
字号:
{   zz_p t, accum;   long i, j, jmin, jmax;   long d = 2*n-1;   for (i = 0; i <= d; i++) {      jmin = max(0, i-(n-1));      jmax = min(n-1, i);      clear(accum);      for (j = jmin; j <= jmax; j++) {         mul(t, (a[j]), (b[i-j]));         add(accum, accum, t);      }      if (i >= n) {         add(accum, accum, (a[i-n]));         add(accum, accum, (b[i-n]));      }      x[i] = accum;   }}void BuildFromRoots(zz_pX& x, const vec_zz_p& a){   long n = a.length();   if (n == 0) {      set(x);      return;   }   long k0 = NextPowerOfTwo(NTL_zz_pX_MUL_CROSSOVER)-1;   long crossover = 1L << k0;   if (n <= NTL_zz_pX_MUL_CROSSOVER) {      x.rep.SetMaxLength(n+1);      x.rep = a;      IterBuild(&x.rep[0], n);      x.rep.SetLength(n+1);      SetCoeff(x, n);      return;   }   long k = NextPowerOfTwo(n);   long m = 1L << k;   long i, j;   long l, width;   zz_pX b(INIT_SIZE, m+1);   b.rep = a;   b.rep.SetLength(m+1);   for (i = n; i < m; i++)      clear(b.rep[i]);   set(b.rep[m]);      fftRep R1(INIT_SIZE, k), R2(INIT_SIZE, k);   zz_p t1, one;   set(one);   vec_zz_p G(INIT_SIZE, crossover), H(INIT_SIZE, crossover);   zz_p *g = G.elts();   zz_p *h = H.elts();   zz_p *tmp;      for (i = 0; i < m; i+= crossover) {      for (j = 0; j < crossover; j++)         negate(g[j], b.rep[i+j]);      if (k0 > 0) {         for (j = 0; j < crossover; j+=2) {            mul(t1, g[j], g[j+1]);            add(g[j+1], g[j], g[j+1]);            g[j] = t1;         }      }         for (l = 1; l < k0; l++) {         width = 1L << l;         for (j = 0; j < crossover; j += 2*width)            mul(&h[j], &g[j], &g[j+width], width);               tmp = g; g = h; h = tmp;      }      for (j = 0; j < crossover; j++)         b.rep[i+j] = g[j];   }   for (l = k0; l < k; l++) {      width = 1L << l;      for (i = 0; i < m; i += 2*width) {         t1 = b.rep[i+width];         set(b.rep[i+width]);         TofftRep(R1, b, l+1, i, i+width);         b.rep[i+width] = t1;         t1 = b.rep[i+2*width];         set(b.rep[i+2*width]);         TofftRep(R2, b, l+1, i+width, i+2*width);         b.rep[i+2*width] = t1;         mul(R1, R1, R2);         FromfftRep(&b.rep[i], R1, 0, 2*width-1);         sub(b.rep[i], b.rep[i], one);      }   }   x.rep.SetLength(n+1);   long delta = m-n;   for (i = 0; i <= n; i++)     x.rep[i] = b.rep[i+delta];   // no need to normalize}void eval(zz_p& b, const zz_pX& f, zz_p a)// does a Horner evaluation{   zz_p acc;   long i;   clear(acc);   for (i = deg(f); i >= 0; i--) {      mul(acc, acc, a);      add(acc, acc, f.rep[i]);   }   b = acc;}void eval(vec_zz_p& b, const zz_pX& f, const vec_zz_p& a)// naive algorithm:  repeats Horner{   if (&b == &f.rep) {      vec_zz_p bb;      eval(bb, f, a);      b = bb;      return;   }   long m = a.length();   b.SetLength(m);   long i;   for (i = 0; i < m; i++)       eval(b[i], f, a[i]);}void interpolate(zz_pX& f, const vec_zz_p& a, const vec_zz_p& b){   long m = a.length();   if (b.length() != m) Error("interpolate: vector length mismatch");   if (m == 0) {      clear(f);      return;   }   vec_zz_p prod;   prod = a;   zz_p t1, t2;   long k, i;   vec_zz_p res;   res.SetLength(m);   for (k = 0; k < m; k++) {      const zz_p& aa = a[k];      set(t1);      for (i = k-1; i >= 0; i--) {         mul(t1, t1, aa);         add(t1, t1, prod[i]);      }      clear(t2);      for (i = k-1; i >= 0; i--) {         mul(t2, t2, aa);         add(t2, t2, res[i]);      }      inv(t1, t1);      sub(t2, b[k], t2);      mul(t1, t1, t2);      for (i = 0; i < k; i++) {         mul(t2, prod[i], t1);         add(res[i], res[i], t2);      }      res[k] = t1;      if (k < m-1) {         if (k == 0)            negate(prod[0], prod[0]);         else {            negate(t1, a[k]);            add(prod[k], t1, prod[k-1]);            for (i = k-1; i >= 1; i--) {               mul(t2, prod[i], t1);               add(prod[i], t2, prod[i-1]);            }            mul(prod[0], prod[0], t1);         }      }   }   while (m > 0 && IsZero(res[m-1])) m--;   res.SetLength(m);   f.rep = res;}NTL_vector_impl(zz_pX,vec_zz_pX)NTL_eq_vector_impl(zz_pX,vec_zz_pX)NTL_io_vector_impl(zz_pX,vec_zz_pX)   void InnerProduct(zz_pX& x, const vec_zz_p& v, long low, long high,                    const vec_zz_pX& H, long n, vec_zz_p& t){   zz_p s;   long i, j;   zz_p *tp = t.elts();   for (j = 0; j < n; j++)      clear(tp[j]);   long p = zz_p::modulus();   double pinv = zz_p::ModulusInverse();   high = min(high, v.length()-1);   for (i = low; i <= high; i++) {      const vec_zz_p& h = H[i-low].rep;      long m = h.length();      zz_p w = (v[i]);      long W = rep(w);      double Wpinv = ((double) W)*pinv;      const zz_p *hp = h.elts();      for (j = 0; j < m; j++) {         long S = MulMod2(rep(hp[j]), W, p, Wpinv);         S = AddMod(S, rep(tp[j]), p);         tp[j].LoopHole() = S;      }   }   x.rep = t;   x.normalize();}void CompMod(zz_pX& x, const zz_pX& g, const zz_pXArgument& A,              const zz_pXModulus& F){   if (deg(g) <= 0) {      x = g;      return;   }   zz_pX s, t;   vec_zz_p scratch(INIT_SIZE, F.n);   long m = A.H.length() - 1;   long l = ((g.rep.length()+m-1)/m) - 1;   zz_pXMultiplier M;   build(M, A.H[m], F);   InnerProduct(t, g.rep, l*m, l*m + m - 1, A.H, F.n, scratch);   for (long i = l-1; i >= 0; i--) {      InnerProduct(s, g.rep, i*m, i*m + m - 1, A.H, F.n, scratch);      MulMod(t, t, M, F);      add(t, t, s);   }   x = t;}void build(zz_pXArgument& A, const zz_pX& h, const zz_pXModulus& F, long m){   if (m <= 0 || deg(h) >= F.n) Error("build: bad args");   if (m > F.n) m = F.n;   long i;   if (zz_pXArgBound > 0) {      double sz = 1;      sz = sz*F.n;      sz = sz+6;      sz = sz*(sizeof (long));      sz = sz/1024;      m = min(m, long(zz_pXArgBound/sz));      m = max(m, 1);   }   zz_pXMultiplier M;   build(M, h, F);   A.H.SetLength(m+1);   set(A.H[0]);   A.H[1] = h;   for (i = 2; i <= m; i++)       MulMod(A.H[i], A.H[i-1], M, F);}long zz_pXArgBound = 0;void CompMod(zz_pX& x, const zz_pX& g, const zz_pX& h, const zz_pXModulus& F)   // x = g(h) mod f{   long m = SqrRoot(g.rep.length());   if (m == 0) {      clear(x);      return;   }   zz_pXArgument A;   build(A, h, F, m);   CompMod(x, g, A, F);}void Comp2Mod(zz_pX& x1, zz_pX& x2, const zz_pX& g1, const zz_pX& g2,              const zz_pX& h, const zz_pXModulus& F){   long m = SqrRoot(g1.rep.length() + g2.rep.length());   if (m == 0) {      clear(x1);      clear(x2);      return;   }   zz_pXArgument A;   build(A, h, F, m);   zz_pX xx1, xx2;   CompMod(xx1, g1, A, F);   CompMod(xx2, g2, A, F);   x1 = xx1;   x2 = xx2;}void Comp3Mod(zz_pX& x1, zz_pX& x2, zz_pX& x3,               const zz_pX& g1, const zz_pX& g2, const zz_pX& g3,              const zz_pX& h, const zz_pXModulus& F){   long m = SqrRoot(g1.rep.length() + g2.rep.length() + g3.rep.length());   if (m == 0) {      clear(x1);      clear(x2);      clear(x3);      return;   }   zz_pXArgument A;   build(A, h, F, m);   zz_pX xx1, xx2, xx3;   CompMod(xx1, g1, A, F);   CompMod(xx2, g2, A, F);   CompMod(xx3, g3, A, F);   x1 = xx1;   x2 = xx2;   x3 = xx3;}static void StripZeroes(vec_zz_p& x){   long n = x.length();   while (n > 0 && IsZero(x[n-1]))      n--;   x.SetLength(n);}void PlainUpdateMap(vec_zz_p& xx, const vec_zz_p& a,                     const zz_pX& b, const zz_pX& f){   long n = deg(f);   long i, m;   if (IsZero(b)) {      xx.SetLength(0);      return;   }   m = n-1 - deg(b);   vec_zz_p x(INIT_SIZE, n);   for (i = 0; i <= m; i++)      InnerProduct(x[i], a, b.rep, i);   if (deg(b) != 0) {      zz_pX c(INIT_SIZE, n);      LeftShift(c, b, m);      for (i = m+1; i < n; i++) {         MulByXMod(c, c, f);         InnerProduct(x[i], a, c.rep);      }   }   xx = x;}   void UpdateMap(vec_zz_p& x, const vec_zz_p& aa,                const zz_pXMultiplier& B, const zz_pXModulus& F){   long n = F.n;   vec_zz_p a;   a = aa;   StripZeroes(a);   if (a.length() > n) Error("UpdateMap: bad args");   long i;   if (!B.UseFFT) {      PlainUpdateMap(x, a, B.b, F.f);      StripZeroes(x);      return;   }   fftRep R1(INIT_SIZE, F.k), R2(INIT_SIZE, F.l);   vec_zz_p V1(INIT_SIZE, n);   RevTofftRep(R1, a, F.k, 0, a.length()-1, 0);   mul(R2, R1, F.FRep);   RevFromfftRep(V1, R2, 0, n-2);   for (i = 0; i <= n-2; i++)  negate(V1[i], V1[i]);   RevTofftRep(R2, V1, F.l, 0, n-2, n-1);   mul(R2, R2, B.B1);   mul(R1, R1, B.B2);   AddExpand(R2, R1);   RevFromfftRep(x, R2, 0, n-1);   StripZeroes(x);}   void ProjectPowers(vec_zz_p& x, const vec_zz_p& a, long k,                   const zz_pXArgument& H, const zz_pXModulus& F){   long n = F.n;   if (a.length() > n || k < 0 || k >= (1L << (NTL_BITS_PER_LONG-4)))      Error("ProjectPowers: bad args");   long m = H.H.length()-1;   long l = (k+m-1)/m - 1;   zz_pXMultiplier M;   build(M, H.H[m], F);   vec_zz_p s(INIT_SIZE, n);   s = a;   StripZeroes(s);   x.SetLength(k);   for (long i = 0; i <= l; i++) {      long m1 = min(m, k-i*m);      zz_p* w = &x[i*m];      for (long j = 0; j < m1; j++)         InnerProduct(w[j], H.H[j].rep, s);      if (i < l)         UpdateMap(s, s, M, F);   }}void ProjectPowers(vec_zz_p& x, const vec_zz_p& a, long k,                   const zz_pX& h, const zz_pXModulus& F){   if (a.length() > F.n || k < 0) Error("ProjectPowers: bad args");   if (k == 0) {      x.SetLength(0);      return;   }   long m = SqrRoot(k);   zz_pXArgument H;   build(H, h, F, m);   ProjectPowers(x, a, k, H, F);}void BerlekampMassey(zz_pX& h, const vec_zz_p& a, long m){   zz_pX Lambda, Sigma, Temp;   long L;   zz_p Delta, Delta1, t1;   long shamt;   // cerr << "*** " << m << "\n";   Lambda.SetMaxLength(m+1);   Sigma.SetMaxLength(m+1);   Temp.SetMaxLength(m+1);   L = 0;   set(Lambda);   clear(Sigma);   set(Delta);   shamt = 0;   long i, r, dl;   for (r = 1; r <= 2*m; r++) {      // cerr << r << "--";      clear(Delta1);      dl = deg(Lambda);      for (i = 0; i <= dl; i++) {         mul(t1, Lambda.rep[i], a[r-i-1]);         add(Delta1, Delta1, t1);      }      if (IsZero(Delta1)) {         shamt++;         // cerr << "case 1: " << deg(Lambda) << " " << deg(Sigma) << " " << shamt << "\n";      }      else if (2*L < r) {         div(t1, Delta1, Delta);         mul(Temp, Sigma, t1);         Sigma = Lambda;         ShiftSub(Lambda, Temp, shamt+1);         shamt = 0;         L = r-L;         Delta = Delta1;         // cerr << "case 2: " << deg(Lambda) << " " << deg(Sigma) << " " << shamt << "\n";      }      else {         shamt++;         div(t1, Delta1, Delta);         mul(Temp, Sigma, t1);         ShiftSub(Lambda, Temp, shamt);         // cerr << "case 3: " << deg(Lambda) << " " << deg(Sigma) << " " << shamt << "\n";      }   }   // cerr << "finished: " << L << " " << deg(Lambda) << "\n";    dl = deg(Lambda);   h.rep.SetLength(L + 1);   for (i = 0; i < L - dl; i++)      clear(h.rep[i]);   for (i = L - dl; i <= L; i++)      h.rep[i] = Lambda.rep[L - i];}void GCDMinPolySeq(zz_pX& h, const vec_zz_p& x, long m){   long i;   zz_pX a, b;   zz_pXMatrix M;   zz_p t;   a.rep.SetLength(2*m);   for (i = 0; i < 2*m; i++) a.rep[i] = x[2*m-1-i];   a.normalize();   SetCoeff(b, 2*m);   HalfGCD(M, b, a, m+1);   /* make monic */   inv(t, LeadCoeff(M(1,1)));   mul(h, M(1,1), t);}void MinPolySeq(zz_pX& h, const vec_zz_p& a, long m){   if (m < 0 || m >= (1L << (NTL_BITS_PER_LONG-4))) Error("MinPoly: bad args");   if (a.length() < 2*m) Error("MinPoly: sequence too short");   if (m > NTL_zz_pX_BERMASS_CROSSOVER)      GCDMinPolySeq(h, a, m);   else      BerlekampMassey(h, a, m);}void DoMinPolyMod(zz_pX& h, const zz_pX& g, const zz_pXModulus& F, long m,               const vec_zz_p& R) {   vec_zz_p x;   ProjectPowers(x, R, 2*m, g, F);   MinPolySeq(h, x, m);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -