📄 lzz_px1.c
字号:
#include <NTL/lzz_pX.h>#include <NTL/new.h>NTL_START_IMPLlong divide(zz_pX& q, const zz_pX& a, const zz_pX& b){ if (IsZero(b)) { if (IsZero(a)) { clear(q); return 1; } else return 0; } zz_pX lq, r; DivRem(lq, r, a, b); if (!IsZero(r)) return 0; q = lq; return 1;}long divide(const zz_pX& a, const zz_pX& b){ if (IsZero(b)) return IsZero(a); zz_pX lq, r; DivRem(lq, r, a, b); if (!IsZero(r)) return 0; return 1;}void zz_pXMatrix::operator=(const zz_pXMatrix& M){ elts[0][0] = M.elts[0][0]; elts[0][1] = M.elts[0][1]; elts[1][0] = M.elts[1][0]; elts[1][1] = M.elts[1][1];}void RightShift(zz_pX& x, const zz_pX& a, long n){ if (n < 0) { if (n < -NTL_MAX_LONG) Error("overflow in RightShift"); LeftShift(x, a, -n); return; } long da = deg(a); long i; if (da < n) { clear(x); return; } if (&x != &a) x.rep.SetLength(da-n+1); for (i = 0; i <= da-n; i++) x.rep[i] = a.rep[i+n]; if (&x == &a) x.rep.SetLength(da-n+1); x.normalize();}void LeftShift(zz_pX& x, const zz_pX& a, long n){ if (n < 0) { if (n < -NTL_MAX_LONG) Error("overflow in LeftShift"); RightShift(x, a, -n); return; } if (n >= (1L << (NTL_BITS_PER_LONG-4))) Error("overflow in LeftShift"); if (IsZero(a)) { clear(x); return; } long m = a.rep.length(); x.rep.SetLength(m+n); long i; for (i = m-1; i >= 0; i--) x.rep[i+n] = a.rep[i]; for (i = 0; i < n; i++) clear(x.rep[i]);}void ShiftAdd(zz_pX& U, const zz_pX& V, long n)// assumes input does not alias output{ if (IsZero(V)) return; long du = deg(U); long dv = deg(V); long d = max(du, n+dv); U.rep.SetLength(d+1); long i; for (i = du+1; i <= d; i++) clear(U.rep[i]); for (i = 0; i <= dv; i++) add(U.rep[i+n], U.rep[i+n], V.rep[i]); U.normalize();}void ShiftSub(zz_pX& U, const zz_pX& V, long n)// assumes input does not alias output{ if (IsZero(V)) return; long du = deg(U); long dv = deg(V); long d = max(du, n+dv); U.rep.SetLength(d+1); long i; for (i = du+1; i <= d; i++) clear(U.rep[i]); for (i = 0; i <= dv; i++) sub(U.rep[i+n], U.rep[i+n], V.rep[i]); U.normalize();}void mul(zz_pX& U, zz_pX& V, const zz_pXMatrix& M)// (U, V)^T = M*(U, V)^T{ long d = deg(U) - deg(M(1,1)); long k = NextPowerOfTwo(d - 1); // When the GCD algorithm is run on polynomials of degree n, n-1, // where n is a power of two, then d-1 is likely to be a power of two. // It would be more natural to set k = NextPowerOfTwo(d+1), but this // would be much less efficient in this case. long n = (1L << k); long xx; zz_p a0, a1, b0, b1, c0, d0, u0, u1, v0, v1, nu0, nu1, nv0; zz_p t1, t2; if (n == d-1) xx = 1; else if (n == d) xx = 2; else xx = 3; switch (xx) { case 1: GetCoeff(a0, M(0,0), 0); GetCoeff(a1, M(0,0), 1); GetCoeff(b0, M(0,1), 0); GetCoeff(b1, M(0,1), 1); GetCoeff(c0, M(1,0), 0); GetCoeff(d0, M(1,1), 0); GetCoeff(u0, U, 0); GetCoeff(u1, U, 1); GetCoeff(v0, V, 0); GetCoeff(v1, V, 1); mul(t1, (a0), (u0)); mul(t2, (b0), (v0)); add(t1, t1, t2); nu0 = t1; mul(t1, (a1), (u0)); mul(t2, (a0), (u1)); add(t1, t1, t2); mul(t2, (b1), (v0)); add(t1, t1, t2); mul(t2, (b0), (v1)); add(t1, t1, t2); nu1 = t1; mul(t1, (c0), (u0)); mul(t2, (d0), (v0)); add (t1, t1, t2); nv0 = t1; break; case 2: GetCoeff(a0, M(0,0), 0); GetCoeff(b0, M(0,1), 0); GetCoeff(u0, U, 0); GetCoeff(v0, V, 0); mul(t1, (a0), (u0)); mul(t2, (b0), (v0)); add(t1, t1, t2); nu0 = t1; break; case 3: break; } fftRep RU(INIT_SIZE, k), RV(INIT_SIZE, k), R1(INIT_SIZE, k), R2(INIT_SIZE, k); TofftRep(RU, U, k); TofftRep(RV, V, k); TofftRep(R1, M(0,0), k); mul(R1, R1, RU); TofftRep(R2, M(0,1), k); mul(R2, R2, RV); add(R1, R1, R2); FromfftRep(U, R1, 0, d); TofftRep(R1, M(1,0), k); mul(R1, R1, RU); TofftRep(R2, M(1,1), k); mul(R2, R2, RV); add(R1, R1, R2); FromfftRep(V, R1, 0, d-1); // now fix-up results switch (xx) { case 1: GetCoeff(u0, U, 0); sub(u0, u0, nu0); SetCoeff(U, d-1, u0); SetCoeff(U, 0, nu0); GetCoeff(u1, U, 1); sub(u1, u1, nu1); SetCoeff(U, d, u1); SetCoeff(U, 1, nu1); GetCoeff(v0, V, 0); sub(v0, v0, nv0); SetCoeff(V, d-1, v0); SetCoeff(V, 0, nv0); break; case 2: GetCoeff(u0, U, 0); sub(u0, u0, nu0); SetCoeff(U, d, u0); SetCoeff(U, 0, nu0); break; }}void mul(zz_pXMatrix& A, zz_pXMatrix& B, zz_pXMatrix& C)// A = B*C, B and C are destroyed{ long db = deg(B(1,1)); long dc = deg(C(1,1)); long da = db + dc; long k = NextPowerOfTwo(da+1); fftRep B00, B01, B10, B11, C0, C1, T1, T2; TofftRep(B00, B(0,0), k); B(0,0).kill(); TofftRep(B01, B(0,1), k); B(0,1).kill(); TofftRep(B10, B(1,0), k); B(1,0).kill(); TofftRep(B11, B(1,1), k); B(1,1).kill(); TofftRep(C0, C(0,0), k); C(0,0).kill(); TofftRep(C1, C(1,0), k); C(1,0).kill(); mul(T1, B00, C0); mul(T2, B01, C1); add(T1, T1, T2); FromfftRep(A(0,0), T1, 0, da); mul(T1, B10, C0); mul(T2, B11, C1); add(T1, T1, T2); FromfftRep(A(1,0), T1, 0, da); TofftRep(C0, C(0,1), k); C(0,1).kill(); TofftRep(C1, C(1,1), k); C(1,1).kill(); mul(T1, B00, C0); mul(T2, B01, C1); add(T1, T1, T2); FromfftRep(A(0,1), T1, 0, da); mul(T1, B10, C0); mul(T2, B11, C1); add(T1, T1, T2); FromfftRep(A(1,1), T1, 0, da);}void IterHalfGCD(zz_pXMatrix& M_out, zz_pX& U, zz_pX& V, long d_red){ M_out(0,0).SetMaxLength(d_red); M_out(0,1).SetMaxLength(d_red); M_out(1,0).SetMaxLength(d_red); M_out(1,1).SetMaxLength(d_red); set(M_out(0,0)); clear(M_out(0,1)); clear(M_out(1,0)); set(M_out(1,1)); long goal = deg(U) - d_red; if (deg(V) <= goal) return; zz_pX Q, t(INIT_SIZE, d_red); while (deg(V) > goal) { PlainDivRem(Q, U, U, V); swap(U, V); mul(t, Q, M_out(1,0)); sub(t, M_out(0,0), t); M_out(0,0) = M_out(1,0); M_out(1,0) = t; mul(t, Q, M_out(1,1)); sub(t, M_out(0,1), t); M_out(0,1) = M_out(1,1); M_out(1,1) = t; }} void HalfGCD(zz_pXMatrix& M_out, const zz_pX& U, const zz_pX& V, long d_red){ if (IsZero(V) || deg(V) <= deg(U) - d_red) { set(M_out(0,0)); clear(M_out(0,1)); clear(M_out(1,0)); set(M_out(1,1)); return; } long n = deg(U) - 2*d_red + 2; if (n < 0) n = 0; zz_pX U1, V1; RightShift(U1, U, n); RightShift(V1, V, n); if (d_red <= NTL_zz_pX_HalfGCD_CROSSOVER) { IterHalfGCD(M_out, U1, V1, d_red); return; } long d1 = (d_red + 1)/2; if (d1 < 1) d1 = 1; if (d1 >= d_red) d1 = d_red - 1; zz_pXMatrix M1; HalfGCD(M1, U1, V1, d1); mul(U1, V1, M1); long d2 = deg(V1) - deg(U) + n + d_red; if (IsZero(V1) || d2 <= 0) { M_out = M1; return; } zz_pX Q; zz_pXMatrix M2; DivRem(Q, U1, U1, V1); swap(U1, V1); HalfGCD(M2, U1, V1, d2); zz_pX t(INIT_SIZE, deg(M1(1,1))+deg(Q)+1); mul(t, Q, M1(1,0)); sub(t, M1(0,0), t); swap(M1(0,0), M1(1,0)); swap(M1(1,0), t); t.kill(); t.SetMaxLength(deg(M1(1,1))+deg(Q)+1); mul(t, Q, M1(1,1)); sub(t, M1(0,1), t); swap(M1(0,1), M1(1,1)); swap(M1(1,1), t); t.kill(); mul(M_out, M2, M1); }void XHalfGCD(zz_pXMatrix& M_out, zz_pX& U, zz_pX& V, long d_red){ if (IsZero(V) || deg(V) <= deg(U) - d_red) { set(M_out(0,0)); clear(M_out(0,1)); clear(M_out(1,0)); set(M_out(1,1)); return; } long du = deg(U); if (d_red <= NTL_zz_pX_HalfGCD_CROSSOVER) { IterHalfGCD(M_out, U, V, d_red); return; } long d1 = (d_red + 1)/2; if (d1 < 1) d1 = 1; if (d1 >= d_red) d1 = d_red - 1; zz_pXMatrix M1; HalfGCD(M1, U, V, d1); mul(U, V, M1); long d2 = deg(V) - du + d_red; if (IsZero(V) || d2 <= 0) { M_out = M1; return; } zz_pX Q; zz_pXMatrix M2; DivRem(Q, U, U, V); swap(U, V); XHalfGCD(M2, U, V, d2); zz_pX t(INIT_SIZE, deg(M1(1,1))+deg(Q)+1); mul(t, Q, M1(1,0)); sub(t, M1(0,0), t); swap(M1(0,0), M1(1,0)); swap(M1(1,0), t); t.kill(); t.SetMaxLength(deg(M1(1,1))+deg(Q)+1); mul(t, Q, M1(1,1)); sub(t, M1(0,1), t); swap(M1(0,1), M1(1,1)); swap(M1(1,1), t); t.kill(); mul(M_out, M2, M1); }void HalfGCD(zz_pX& U, zz_pX& V){ long d_red = (deg(U)+1)/2; if (IsZero(V) || deg(V) <= deg(U) - d_red) { return; } long du = deg(U); long d1 = (d_red + 1)/2; if (d1 < 1) d1 = 1; if (d1 >= d_red) d1 = d_red - 1; zz_pXMatrix M1; HalfGCD(M1, U, V, d1); mul(U, V, M1); long d2 = deg(V) - du + d_red; if (IsZero(V) || d2 <= 0) { return; } M1(0,0).kill(); M1(0,1).kill(); M1(1,0).kill(); M1(1,1).kill(); zz_pX Q; DivRem(Q, U, U, V); swap(U, V); HalfGCD(M1, U, V, d2); mul(U, V, M1); }void GCD(zz_pX& d, const zz_pX& u, const zz_pX& v){ zz_pX u1, v1; u1 = u; v1 = v; if (deg(u1) == deg(v1)) { if (IsZero(u1)) { clear(d); return; } rem(v1, v1, u1); } else if (deg(u1) < deg(v1)) { swap(u1, v1); } // deg(u1) > deg(v1) while (deg(u1) > NTL_zz_pX_GCD_CROSSOVER && !IsZero(v1)) { HalfGCD(u1, v1); if (!IsZero(v1)) { rem(u1, u1, v1); swap(u1, v1); } } PlainGCD(d, u1, v1);}void XGCD(zz_pX& d, zz_pX& s, zz_pX& t, const zz_pX& a, const zz_pX& b){ zz_p w; if (IsZero(a) && IsZero(b)) { clear(d); set(s); clear(t); return; } zz_pX U, V, Q; U = a; V = b; long flag = 0; if (deg(U) == deg(V)) { DivRem(Q, U, U, V); swap(U, V); flag = 1; } else if (deg(U) < deg(V)) { swap(U, V); flag = 2; } zz_pXMatrix M; XHalfGCD(M, U, V, deg(U)+1); d = U; if (flag == 0) { s = M(0,0); t = M(0,1); } else if (flag == 1) { s = M(0,1); mul(t, Q, M(0,1)); sub(t, M(0,0), t); } else { /* flag == 2 */ s = M(0,1); t = M(0,0); } // normalize inv(w, LeadCoeff(d)); mul(d, d, w); mul(s, s, w); mul(t, t, w);} void IterBuild(zz_p* a, long n){ long i, k; zz_p b, t; if (n <= 0) return; negate(a[0], a[0]); for (k = 1; k <= n-1; k++) { negate(b, a[k]); add(a[k], b, a[k-1]); for (i = k-1; i >= 1; i--) { mul(t, a[i], b); add(a[i], t, a[i-1]); } mul(a[0], a[0], b); }} void mul(zz_p* x, const zz_p* a, const zz_p* b, long n)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -