📄 mat_rr.c
字号:
#include <NTL/mat_RR.h>#include <NTL/new.h>NTL_START_IMPLNTL_matrix_impl(RR,vec_RR,vec_vec_RR,mat_RR)NTL_io_matrix_impl(RR,vec_RR,vec_vec_RR,mat_RR)NTL_eq_matrix_impl(RR,vec_RR,vec_vec_RR,mat_RR) void add(mat_RR& X, const mat_RR& A, const mat_RR& B) { long n = A.NumRows(); long m = A.NumCols(); if (B.NumRows() != n || B.NumCols() != m) Error("matrix add: dimension mismatch"); X.SetDims(n, m); long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= m; j++) add(X(i,j), A(i,j), B(i,j)); } void sub(mat_RR& X, const mat_RR& A, const mat_RR& B) { long n = A.NumRows(); long m = A.NumCols(); if (B.NumRows() != n || B.NumCols() != m) Error("matrix sub: dimension mismatch"); X.SetDims(n, m); long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= m; j++) sub(X(i,j), A(i,j), B(i,j)); } void mul_aux(mat_RR& X, const mat_RR& A, const mat_RR& B) { long n = A.NumRows(); long l = A.NumCols(); long m = B.NumCols(); if (l != B.NumRows()) Error("matrix mul: dimension mismatch"); X.SetDims(n, m); long i, j, k; RR acc, tmp; for (i = 1; i <= n; i++) { for (j = 1; j <= m; j++) { clear(acc); for(k = 1; k <= l; k++) { mul(tmp, A(i,k), B(k,j)); add(acc, acc, tmp); } X(i,j) = acc; } } } void mul(mat_RR& X, const mat_RR& A, const mat_RR& B) { if (&X == &A || &X == &B) { mat_RR tmp; mul_aux(tmp, A, B); X = tmp; } else mul_aux(X, A, B); } staticvoid mul_aux(vec_RR& x, const mat_RR& A, const vec_RR& b) { long n = A.NumRows(); long l = A.NumCols(); if (l != b.length()) Error("matrix mul: dimension mismatch"); x.SetLength(n); long i, k; RR acc, tmp; for (i = 1; i <= n; i++) { clear(acc); for (k = 1; k <= l; k++) { mul(tmp, A(i,k), b(k)); add(acc, acc, tmp); } x(i) = acc; } } void mul(vec_RR& x, const mat_RR& A, const vec_RR& b) { if (&b == &x || A.position(b) != -1) { vec_RR tmp; mul_aux(tmp, A, b); x = tmp; } else mul_aux(x, A, b);} staticvoid mul_aux(vec_RR& x, const vec_RR& a, const mat_RR& B) { long n = B.NumRows(); long l = B.NumCols(); if (n != a.length()) Error("matrix mul: dimension mismatch"); x.SetLength(l); long i, k; RR acc, tmp; for (i = 1; i <= l; i++) { clear(acc); for (k = 1; k <= n; k++) { mul(tmp, a(k), B(k,i)); add(acc, acc, tmp); } x(i) = acc; } } void mul(vec_RR& x, const vec_RR& a, const mat_RR& B){ if (&a == &x || B.position(a) != -1) { vec_RR tmp; mul_aux(tmp, a, B); x = tmp; } else mul_aux(x, a, B);} void ident(mat_RR& X, long n) { X.SetDims(n, n); long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) if (i == j) set(X(i, j)); else clear(X(i, j)); } void determinant(RR& d, const mat_RR& M_in){ long k, n; long i, j; long pos; RR t1, t2; RR *x, *y; n = M_in.NumRows(); if (M_in.NumCols() != n) Error("determinant: nonsquare matrix"); if (n == 0) { set(d); return; } mat_RR M; M = M_in; RR det; set(det); RR maxval; for (k = 0; k < n; k++) { pos = -1; clear(maxval); for (i = k; i < n; i++) { abs(t1, M[i][k]); if (t1 > maxval) { pos = i; maxval = t1; } } if (pos != -1) { if (k != pos) { swap(M[pos], M[k]); negate(det, det); } mul(det, det, M[k][k]); // make M[k, k] == -1 inv(t1, M[k][k]); negate(t1, t1); for (j = k+1; j < n; j++) { mul(M[k][j], M[k][j], t1); } for (i = k+1; i < n; i++) { // M[i] = M[i] + M[k]*M[i,k] t1 = M[i][k]; x = M[i].elts() + (k+1); y = M[k].elts() + (k+1); for (j = k+1; j < n; j++, x++, y++) { // *x = *x + (*y)*t1 mul(t2, *y, t1); add(*x, *x, t2); } } } else { clear(d); return; } } d = det;}RR determinant(const mat_RR& a) { RR x; determinant(x, a); NTL_OPT_RETURN(RR, x); }long IsIdent(const mat_RR& A, long n){ if (A.NumRows() != n || A.NumCols() != n) return 0; long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) if (i != j) { if (!IsZero(A(i, j))) return 0; } else { if (!IsOne(A(i, j))) return 0; } return 1;} void transpose(mat_RR& X, const mat_RR& A){ long n = A.NumRows(); long m = A.NumCols(); long i, j; if (&X == & A) { if (n == m) for (i = 1; i <= n; i++) for (j = i+1; j <= n; j++) swap(X(i, j), X(j, i)); else { mat_RR tmp; tmp.SetDims(m, n); for (i = 1; i <= n; i++) for (j = 1; j <= m; j++) tmp(j, i) = A(i, j); X.kill(); X = tmp; } } else { X.SetDims(m, n); for (i = 1; i <= n; i++) for (j = 1; j <= m; j++) X(j, i) = A(i, j); }} void solve(RR& d, vec_RR& X, const mat_RR& A, const vec_RR& b){ long n = A.NumRows(); if (A.NumCols() != n) Error("solve: nonsquare matrix"); if (b.length() != n) Error("solve: dimension mismatch"); if (n == 0) { set(d); X.SetLength(0); return; } long i, j, k, pos; RR t1, t2; RR *x, *y; mat_RR M; M.SetDims(n, n+1); for (i = 0; i < n; i++) { for (j = 0; j < n; j++) M[i][j] = A[j][i]; M[i][n] = b[i]; } RR det; set(det); RR maxval; for (k = 0; k < n; k++) { pos = -1; clear(maxval); for (i = k; i < n; i++) { abs(t1, M[i][k]); if (t1 > maxval) { pos = i; maxval = t1; } } if (pos != -1) { if (k != pos) { swap(M[pos], M[k]); negate(det, det); } mul(det, det, M[k][k]); // make M[k, k] == -1 inv(t1, M[k][k]); negate(t1, t1); for (j = k+1; j <= n; j++) { mul(M[k][j], M[k][j], t1); } for (i = k+1; i < n; i++) { // M[i] = M[i] + M[k]*M[i,k] t1 = M[i][k]; x = M[i].elts() + (k+1); y = M[k].elts() + (k+1); for (j = k+1; j <= n; j++, x++, y++) { // *x = *x + (*y)*t1 mul(t2, *y, t1); add(*x, *x, t2); } } } else { clear(d); return; } } X.SetLength(n); for (i = n-1; i >= 0; i--) { clear(t1); for (j = i+1; j < n; j++) { mul(t2, X[j], M[i][j]); add(t1, t1, t2); } sub(t1, t1, M[i][n]); X[i] = t1; } d = det;}void inv(RR& d, mat_RR& X, const mat_RR& A){ long n = A.NumRows(); if (A.NumCols() != n) Error("inv: nonsquare matrix"); if (n == 0) { set(d); X.SetDims(0, 0); return; } long i, j, k, pos; RR t1, t2; RR *x, *y; mat_RR M; M.SetDims(n, 2*n); for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { M[i][j] = A[i][j]; clear(M[i][n+j]); } set(M[i][n+i]); } RR det; set(det); RR maxval; for (k = 0; k < n; k++) { pos = -1; clear(maxval); for (i = k; i < n; i++) { abs(t1, M[i][k]); if (t1 > maxval) { pos = i; maxval = t1; } } if (pos != -1) { if (k != pos) { swap(M[pos], M[k]); negate(det, det); } mul(det, det, M[k][k]); // make M[k, k] == -1 inv(t1, M[k][k]); negate(t1, t1); for (j = k+1; j < 2*n; j++) { mul(M[k][j], M[k][j], t1); } for (i = k+1; i < n; i++) { // M[i] = M[i] + M[k]*M[i,k] t1 = M[i][k]; // this is already reduced x = M[i].elts() + (k+1); y = M[k].elts() + (k+1); for (j = k+1; j < 2*n; j++, x++, y++) { // *x = *x + (*y)*t1 mul(t2, *y, t1); add(*x, *x, t2); } } } else { clear(d); return; } } X.SetDims(n, n); for (k = 0; k < n; k++) { for (i = n-1; i >= 0; i--) { clear(t1); for (j = i+1; j < n; j++) { mul(t2, X[j][k], M[i][j]); add(t1, t1, t2); } sub(t1, t1, M[i][n+k]); X[i][k] = t1; } } d = det;} void mul(mat_RR& X, const mat_RR& A, const RR& b_in){ RR b = b_in; long n = A.NumRows(); long m = A.NumCols(); X.SetDims(n, m); long i, j; for (i = 0; i < n; i++) for (j = 0; j < m; j++) mul(X[i][j], A[i][j], b);}void mul(mat_RR& X, const mat_RR& A, double b_in){ static RR b; b = b_in; long n = A.NumRows(); long m = A.NumCols(); X.SetDims(n, m); long i, j; for (i = 0; i < n; i++) for (j = 0; j < m; j++) mul(X[i][j], A[i][j], b);}void diag(mat_RR& X, long n, const RR& d_in) { RR d = d_in; X.SetDims(n, n); long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) if (i == j) X(i, j) = d; else clear(X(i, j)); } long IsDiag(const mat_RR& A, long n, const RR& d){ if (A.NumRows() != n || A.NumCols() != n) return 0; long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) if (i != j) { if (!IsZero(A(i, j))) return 0; } else { if (A(i, j) != d) return 0; } return 1;}void negate(mat_RR& X, const mat_RR& A){ long n = A.NumRows(); long m = A.NumCols(); X.SetDims(n, m); long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= m; j++) negate(X(i,j), A(i,j));}long IsZero(const mat_RR& a){ long n = a.NumRows(); long i; for (i = 0; i < n; i++) if (!IsZero(a[i])) return 0; return 1;}void clear(mat_RR& x){ long n = x.NumRows(); long i; for (i = 0; i < n; i++) clear(x[i]);}mat_RR operator+(const mat_RR& a, const mat_RR& b){ mat_RR res; add(res, a, b); NTL_OPT_RETURN(mat_RR, res);}mat_RR operator*(const mat_RR& a, const mat_RR& b){ mat_RR res; mul_aux(res, a, b); NTL_OPT_RETURN(mat_RR, res);}mat_RR operator-(const mat_RR& a, const mat_RR& b){ mat_RR res; sub(res, a, b); NTL_OPT_RETURN(mat_RR, res);}mat_RR operator-(const mat_RR& a){ mat_RR res; negate(res, a); NTL_OPT_RETURN(mat_RR, res);}vec_RR operator*(const mat_RR& a, const vec_RR& b){ vec_RR res; mul_aux(res, a, b); NTL_OPT_RETURN(vec_RR, res);}vec_RR operator*(const vec_RR& a, const mat_RR& b){ vec_RR res; mul_aux(res, a, b); NTL_OPT_RETURN(vec_RR, res);}void inv(mat_RR& X, const mat_RR& A){ RR d; inv(d, X, A); if (d == 0) Error("inv: non-invertible matrix");}void power(mat_RR& X, const mat_RR& A, const ZZ& e){ if (A.NumRows() != A.NumCols()) Error("power: non-square matrix"); if (e == 0) { ident(X, A.NumRows()); return; } mat_RR T1, T2; long i, k; k = NumBits(e); T1 = A; for (i = k-2; i >= 0; i--) { sqr(T2, T1); if (bit(e, i)) mul(T1, T2, A); else T1 = T2; } if (e < 0) inv(X, T1); else X = T1;}NTL_END_IMPL
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -