⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mat_rr.c

📁 密码大家Shoup写的数论算法c语言实现
💻 C
字号:
#include <NTL/mat_RR.h>#include <NTL/new.h>NTL_START_IMPLNTL_matrix_impl(RR,vec_RR,vec_vec_RR,mat_RR)NTL_io_matrix_impl(RR,vec_RR,vec_vec_RR,mat_RR)NTL_eq_matrix_impl(RR,vec_RR,vec_vec_RR,mat_RR)  void add(mat_RR& X, const mat_RR& A, const mat_RR& B)  {     long n = A.NumRows();     long m = A.NumCols();       if (B.NumRows() != n || B.NumCols() != m)         Error("matrix add: dimension mismatch");       X.SetDims(n, m);       long i, j;     for (i = 1; i <= n; i++)         for (j = 1; j <= m; j++)           add(X(i,j), A(i,j), B(i,j));  }    void sub(mat_RR& X, const mat_RR& A, const mat_RR& B)  {     long n = A.NumRows();     long m = A.NumCols();       if (B.NumRows() != n || B.NumCols() != m)        Error("matrix sub: dimension mismatch");       X.SetDims(n, m);       long i, j;     for (i = 1; i <= n; i++)        for (j = 1; j <= m; j++)           sub(X(i,j), A(i,j), B(i,j));  }    void mul_aux(mat_RR& X, const mat_RR& A, const mat_RR& B)  {     long n = A.NumRows();     long l = A.NumCols();     long m = B.NumCols();       if (l != B.NumRows())        Error("matrix mul: dimension mismatch");       X.SetDims(n, m);       long i, j, k;     RR acc, tmp;       for (i = 1; i <= n; i++) {        for (j = 1; j <= m; j++) {           clear(acc);           for(k = 1; k <= l; k++) {              mul(tmp, A(i,k), B(k,j));              add(acc, acc, tmp);           }           X(i,j) = acc;        }     }  }      void mul(mat_RR& X, const mat_RR& A, const mat_RR& B)  {     if (&X == &A || &X == &B) {        mat_RR tmp;        mul_aux(tmp, A, B);        X = tmp;     }     else        mul_aux(X, A, B);  }      staticvoid mul_aux(vec_RR& x, const mat_RR& A, const vec_RR& b)  {     long n = A.NumRows();     long l = A.NumCols();       if (l != b.length())        Error("matrix mul: dimension mismatch");       x.SetLength(n);       long i, k;     RR acc, tmp;       for (i = 1; i <= n; i++) {        clear(acc);        for (k = 1; k <= l; k++) {           mul(tmp, A(i,k), b(k));           add(acc, acc, tmp);        }        x(i) = acc;     }  }      void mul(vec_RR& x, const mat_RR& A, const vec_RR& b)  {     if (&b == &x || A.position(b) != -1) {      vec_RR tmp;      mul_aux(tmp, A, b);      x = tmp;   }   else      mul_aux(x, A, b);}  staticvoid mul_aux(vec_RR& x, const vec_RR& a, const mat_RR& B)  {     long n = B.NumRows();     long l = B.NumCols();       if (n != a.length())        Error("matrix mul: dimension mismatch");       x.SetLength(l);       long i, k;     RR acc, tmp;       for (i = 1; i <= l; i++) {        clear(acc);        for (k = 1; k <= n; k++) {           mul(tmp, a(k), B(k,i));         add(acc, acc, tmp);        }        x(i) = acc;     }  }  void mul(vec_RR& x, const vec_RR& a, const mat_RR& B){   if (&a == &x || B.position(a) != -1) {      vec_RR tmp;      mul_aux(tmp, a, B);      x = tmp;   }   else      mul_aux(x, a, B);}       void ident(mat_RR& X, long n)  {     X.SetDims(n, n);     long i, j;       for (i = 1; i <= n; i++)        for (j = 1; j <= n; j++)           if (i == j)              set(X(i, j));           else              clear(X(i, j));  } void determinant(RR& d, const mat_RR& M_in){   long k, n;   long i, j;   long pos;   RR t1, t2;   RR *x, *y;   n = M_in.NumRows();   if (M_in.NumCols() != n)      Error("determinant: nonsquare matrix");   if (n == 0) {      set(d);      return;   }   mat_RR M;   M = M_in;   RR det;   set(det);   RR maxval;   for (k = 0; k < n; k++) {      pos = -1;      clear(maxval);      for (i = k; i < n; i++) {         abs(t1, M[i][k]);         if (t1 > maxval) {            pos = i;            maxval = t1;         }      }      if (pos != -1) {         if (k != pos) {            swap(M[pos], M[k]);            negate(det, det);         }         mul(det, det, M[k][k]);         // make M[k, k] == -1          inv(t1, M[k][k]);         negate(t1, t1);         for (j = k+1; j < n; j++) {            mul(M[k][j], M[k][j], t1);         }         for (i = k+1; i < n; i++) {            // M[i] = M[i] + M[k]*M[i,k]            t1 = M[i][k];               x = M[i].elts() + (k+1);            y = M[k].elts() + (k+1);            for (j = k+1; j < n; j++, x++, y++) {               // *x = *x + (*y)*t1               mul(t2, *y, t1);               add(*x, *x, t2);            }         }      }      else {         clear(d);         return;      }   }   d = det;}RR determinant(const mat_RR& a)   { RR x; determinant(x, a); NTL_OPT_RETURN(RR, x); }long IsIdent(const mat_RR& A, long n){   if (A.NumRows() != n || A.NumCols() != n)      return 0;   long i, j;   for (i = 1; i <= n; i++)      for (j = 1; j <= n; j++)         if (i != j) {            if (!IsZero(A(i, j))) return 0;         }         else {            if (!IsOne(A(i, j))) return 0;         }   return 1;}            void transpose(mat_RR& X, const mat_RR& A){   long n = A.NumRows();   long m = A.NumCols();   long i, j;   if (&X == & A) {      if (n == m)         for (i = 1; i <= n; i++)            for (j = i+1; j <= n; j++)               swap(X(i, j), X(j, i));      else {         mat_RR tmp;         tmp.SetDims(m, n);         for (i = 1; i <= n; i++)            for (j = 1; j <= m; j++)               tmp(j, i) = A(i, j);         X.kill();         X = tmp;      }   }   else {      X.SetDims(m, n);      for (i = 1; i <= n; i++)         for (j = 1; j <= m; j++)            X(j, i) = A(i, j);   }}   void solve(RR& d, vec_RR& X,            const mat_RR& A, const vec_RR& b){   long n = A.NumRows();   if (A.NumCols() != n)      Error("solve: nonsquare matrix");   if (b.length() != n)      Error("solve: dimension mismatch");   if (n == 0) {      set(d);      X.SetLength(0);      return;   }   long i, j, k, pos;   RR t1, t2;   RR *x, *y;   mat_RR M;   M.SetDims(n, n+1);   for (i = 0; i < n; i++) {      for (j = 0; j < n; j++)          M[i][j] = A[j][i];      M[i][n] = b[i];   }   RR det;   set(det);   RR maxval;   for (k = 0; k < n; k++) {      pos = -1;      clear(maxval);      for (i = k; i < n; i++) {         abs(t1, M[i][k]);         if (t1 > maxval) {            pos = i;            maxval = t1;         }      }      if (pos != -1) {         if (k != pos) {            swap(M[pos], M[k]);            negate(det, det);         }         mul(det, det, M[k][k]);         // make M[k, k] == -1          inv(t1, M[k][k]);         negate(t1, t1);         for (j = k+1; j <= n; j++) {            mul(M[k][j], M[k][j], t1);         }         for (i = k+1; i < n; i++) {            // M[i] = M[i] + M[k]*M[i,k]            t1 = M[i][k];               x = M[i].elts() + (k+1);            y = M[k].elts() + (k+1);            for (j = k+1; j <= n; j++, x++, y++) {               // *x = *x + (*y)*t1               mul(t2, *y, t1);               add(*x, *x, t2);            }         }      }      else {         clear(d);         return;      }   }   X.SetLength(n);   for (i = n-1; i >= 0; i--) {      clear(t1);      for (j = i+1; j < n; j++) {         mul(t2, X[j], M[i][j]);         add(t1, t1, t2);      }      sub(t1, t1, M[i][n]);      X[i] = t1;   }   d = det;}void inv(RR& d, mat_RR& X, const mat_RR& A){   long n = A.NumRows();   if (A.NumCols() != n)      Error("inv: nonsquare matrix");   if (n == 0) {      set(d);      X.SetDims(0, 0);      return;   }   long i, j, k, pos;   RR t1, t2;   RR *x, *y;   mat_RR M;   M.SetDims(n, 2*n);   for (i = 0; i < n; i++) {      for (j = 0; j < n; j++) {         M[i][j] = A[i][j];         clear(M[i][n+j]);      }      set(M[i][n+i]);   }   RR det;   set(det);   RR maxval;   for (k = 0; k < n; k++) {      pos = -1;      clear(maxval);      for (i = k; i < n; i++) {         abs(t1, M[i][k]);         if (t1 > maxval) {            pos = i;            maxval = t1;         }      }      if (pos != -1) {         if (k != pos) {            swap(M[pos], M[k]);            negate(det, det);         }         mul(det, det, M[k][k]);         // make M[k, k] == -1          inv(t1, M[k][k]);         negate(t1, t1);         for (j = k+1; j < 2*n; j++) {            mul(M[k][j], M[k][j], t1);         }         for (i = k+1; i < n; i++) {            // M[i] = M[i] + M[k]*M[i,k]            t1 = M[i][k];   // this is already reduced            x = M[i].elts() + (k+1);            y = M[k].elts() + (k+1);            for (j = k+1; j < 2*n; j++, x++, y++) {               // *x = *x + (*y)*t1               mul(t2, *y, t1);               add(*x, *x, t2);            }         }      }      else {         clear(d);         return;      }   }   X.SetDims(n, n);   for (k = 0; k < n; k++) {      for (i = n-1; i >= 0; i--) {         clear(t1);         for (j = i+1; j < n; j++) {            mul(t2, X[j][k], M[i][j]);            add(t1, t1, t2);         }         sub(t1, t1, M[i][n+k]);         X[i][k] = t1;      }   }   d = det;}   void mul(mat_RR& X, const mat_RR& A, const RR& b_in){   RR b = b_in;   long n = A.NumRows();   long m = A.NumCols();   X.SetDims(n, m);   long i, j;   for (i = 0; i < n; i++)      for (j = 0; j < m; j++)         mul(X[i][j], A[i][j], b);}void mul(mat_RR& X, const mat_RR& A, double b_in){   static RR b;   b = b_in;   long n = A.NumRows();   long m = A.NumCols();   X.SetDims(n, m);   long i, j;   for (i = 0; i < n; i++)      for (j = 0; j < m; j++)         mul(X[i][j], A[i][j], b);}void diag(mat_RR& X, long n, const RR& d_in)  {     RR d = d_in;   X.SetDims(n, n);     long i, j;       for (i = 1; i <= n; i++)        for (j = 1; j <= n; j++)           if (i == j)              X(i, j) = d;           else              clear(X(i, j));  } long IsDiag(const mat_RR& A, long n, const RR& d){   if (A.NumRows() != n || A.NumCols() != n)      return 0;   long i, j;   for (i = 1; i <= n; i++)      for (j = 1; j <= n; j++)         if (i != j) {            if (!IsZero(A(i, j))) return 0;         }         else {            if (A(i, j) != d) return 0;         }   return 1;}void negate(mat_RR& X, const mat_RR& A){   long n = A.NumRows();   long m = A.NumCols();   X.SetDims(n, m);   long i, j;   for (i = 1; i <= n; i++)      for (j = 1; j <= m; j++)         negate(X(i,j), A(i,j));}long IsZero(const mat_RR& a){   long n = a.NumRows();   long i;   for (i = 0; i < n; i++)      if (!IsZero(a[i]))         return 0;   return 1;}void clear(mat_RR& x){   long n = x.NumRows();   long i;   for (i = 0; i < n; i++)      clear(x[i]);}mat_RR operator+(const mat_RR& a, const mat_RR& b){   mat_RR res;   add(res, a, b);   NTL_OPT_RETURN(mat_RR, res);}mat_RR operator*(const mat_RR& a, const mat_RR& b){   mat_RR res;   mul_aux(res, a, b);   NTL_OPT_RETURN(mat_RR, res);}mat_RR operator-(const mat_RR& a, const mat_RR& b){   mat_RR res;   sub(res, a, b);   NTL_OPT_RETURN(mat_RR, res);}mat_RR operator-(const mat_RR& a){   mat_RR res;   negate(res, a);   NTL_OPT_RETURN(mat_RR, res);}vec_RR operator*(const mat_RR& a, const vec_RR& b){   vec_RR res;   mul_aux(res, a, b);   NTL_OPT_RETURN(vec_RR, res);}vec_RR operator*(const vec_RR& a, const mat_RR& b){   vec_RR res;   mul_aux(res, a, b);   NTL_OPT_RETURN(vec_RR, res);}void inv(mat_RR& X, const mat_RR& A){   RR d;   inv(d, X, A);   if (d == 0) Error("inv: non-invertible matrix");}void power(mat_RR& X, const mat_RR& A, const ZZ& e){   if (A.NumRows() != A.NumCols()) Error("power: non-square matrix");   if (e == 0) {      ident(X, A.NumRows());      return;   }   mat_RR T1, T2;   long i, k;   k = NumBits(e);   T1 = A;   for (i = k-2; i >= 0; i--) {      sqr(T2, T1);      if (bit(e, i))         mul(T1, T2, A);      else         T1 = T2;   }   if (e < 0)      inv(X, T1);   else      X = T1;}NTL_END_IMPL

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -