📄 mat_lzz_p.c
字号:
#include <NTL/mat_lzz_p.h>#include <NTL/new.h>NTL_START_IMPLNTL_matrix_impl(zz_p,vec_zz_p,vec_vec_zz_p,mat_zz_p)NTL_io_matrix_impl(zz_p,vec_zz_p,vec_vec_zz_p,mat_zz_p)NTL_eq_matrix_impl(zz_p,vec_zz_p,vec_vec_zz_p,mat_zz_p) void add(mat_zz_p& X, const mat_zz_p& A, const mat_zz_p& B) { long n = A.NumRows(); long m = A.NumCols(); if (B.NumRows() != n || B.NumCols() != m) Error("matrix add: dimension mismatch"); X.SetDims(n, m); long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= m; j++) add(X(i,j), A(i,j), B(i,j)); } void sub(mat_zz_p& X, const mat_zz_p& A, const mat_zz_p& B) { long n = A.NumRows(); long m = A.NumCols(); if (B.NumRows() != n || B.NumCols() != m) Error("matrix sub: dimension mismatch"); X.SetDims(n, m); long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= m; j++) sub(X(i,j), A(i,j), B(i,j)); } void mul_aux(mat_zz_p& X, const mat_zz_p& A, const mat_zz_p& B) { long n = A.NumRows(); long l = A.NumCols(); long m = B.NumCols(); if (l != B.NumRows()) Error("matrix mul: dimension mismatch"); X.SetDims(n, m); long i, j, k; zz_p acc, tmp; for (i = 1; i <= n; i++) { for (j = 1; j <= m; j++) { clear(acc); for(k = 1; k <= l; k++) { mul(tmp, A(i,k), B(k,j)); add(acc, acc, tmp); } X(i,j) = acc; } } } void mul(mat_zz_p& X, const mat_zz_p& A, const mat_zz_p& B) { if (&X == &A || &X == &B) { mat_zz_p tmp; mul_aux(tmp, A, B); X = tmp; } else mul_aux(X, A, B); } void mul_aux(vec_zz_p& x, const mat_zz_p& A, const vec_zz_p& b){ long n = A.NumRows(); long l = A.NumCols(); if (l != b.length()) Error("matrix mul: dimension mismatch"); x.SetLength(n); long p = zz_p::modulus(); double pinv = zz_p::ModulusInverse(); long i, k; long acc, tmp; const zz_p* bp = b.elts(); for (i = 0; i < n; i++) { acc = 0; const zz_p* ap = A[i].elts(); for (k = 0; k < l; k++) { tmp = MulMod(rep(ap[k]), rep(bp[k]), p, pinv); acc = AddMod(acc, tmp, p); } x[i].LoopHole() = acc; }} void mul(vec_zz_p& x, const mat_zz_p& A, const vec_zz_p& b) { if (&b == &x || A.position(b) != -1) { vec_zz_p tmp; mul_aux(tmp, A, b); x = tmp; } else mul_aux(x, A, b);} staticvoid mul_aux(vec_zz_p& x, const vec_zz_p& a, const mat_zz_p& B) { long n = B.NumRows(); long l = B.NumCols(); if (n != a.length()) Error("matrix mul: dimension mismatch"); x.SetLength(l); long i, k; zz_p acc, tmp; for (i = 1; i <= l; i++) { clear(acc); for (k = 1; k <= n; k++) { mul(tmp, a(k), B(k,i)); add(acc, acc, tmp); } x(i) = acc; } } void mul(vec_zz_p& x, const vec_zz_p& a, const mat_zz_p& B){ if (&a == &x || B.position(a) != -1) { vec_zz_p tmp; mul_aux(tmp, a, B); x = tmp; } else mul_aux(x, a, B);} void ident(mat_zz_p& X, long n) { X.SetDims(n, n); long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) if (i == j) set(X(i, j)); else clear(X(i, j)); } void determinant(zz_p& d, const mat_zz_p& M_in){ long k, n; long i, j; long pos; zz_p t1, t2, t3; zz_p *x, *y; mat_zz_p M; M = M_in; n = M.NumRows(); if (M.NumCols() != n) Error("determinant: nonsquare matrix"); if (n == 0) { set(d); return; } zz_p det; set(det); long p = zz_p::modulus(); double pinv = zz_p::ModulusInverse(); for (k = 0; k < n; k++) { pos = -1; for (i = k; i < n; i++) { if (!IsZero(M[i][k])) { pos = i; break; } } if (pos != -1) { if (k != pos) { swap(M[pos], M[k]); negate(det, det); } mul(det, det, M[k][k]); inv(t3, M[k][k]); for (i = k+1; i < n; i++) { // M[i] = M[i] - M[k]*M[i,k]*t3 mul(t1, M[i][k], t3); negate(t1, t1); x = M[i].elts() + (k+1); y = M[k].elts() + (k+1); long T1 = rep(t1); double t1pinv = T1*pinv; long T2; for (j = k+1; j < n; j++, x++, y++) { // *x = *x + (*y)*t1 T2 = MulMod2(rep(*y), T1, p, t1pinv); x->LoopHole() = AddMod(rep(*x), T2, p); } } } else { clear(d); return; } } d = det;}long IsIdent(const mat_zz_p& A, long n){ if (A.NumRows() != n || A.NumCols() != n) return 0; long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) if (i != j) { if (!IsZero(A(i, j))) return 0; } else { if (!IsOne(A(i, j))) return 0; } return 1;} void transpose(mat_zz_p& X, const mat_zz_p& A){ long n = A.NumRows(); long m = A.NumCols(); long i, j; if (&X == & A) { if (n == m) for (i = 1; i <= n; i++) for (j = i+1; j <= n; j++) swap(X(i, j), X(j, i)); else { mat_zz_p tmp; tmp.SetDims(m, n); for (i = 1; i <= n; i++) for (j = 1; j <= m; j++) tmp(j, i) = A(i, j); X.kill(); X = tmp; } } else { X.SetDims(m, n); for (i = 1; i <= n; i++) for (j = 1; j <= m; j++) X(j, i) = A(i, j); }} void solve(zz_p& d, vec_zz_p& X, const mat_zz_p& A, const vec_zz_p& b){ long n = A.NumRows(); if (A.NumCols() != n) Error("solve: nonsquare matrix"); if (b.length() != n) Error("solve: dimension mismatch"); if (n == 0) { set(d); X.SetLength(0); return; } long i, j, k, pos; zz_p t1, t2, t3; zz_p *x, *y; mat_zz_p M; M.SetDims(n, n+1); for (i = 0; i < n; i++) { for (j = 0; j < n; j++) M[i][j] = A[j][i]; M[i][n] = b[i]; } zz_p det; set(det); long p = zz_p::modulus(); double pinv = zz_p::ModulusInverse(); for (k = 0; k < n; k++) { pos = -1; for (i = k; i < n; i++) { if (!IsZero(M[i][k])) { pos = i; break; } } if (pos != -1) { if (k != pos) { swap(M[pos], M[k]); negate(det, det); } mul(det, det, M[k][k]); inv(t3, M[k][k]); M[k][k] = t3; for (i = k+1; i < n; i++) { // M[i] = M[i] - M[k]*M[i,k]*t3 mul(t1, M[i][k], t3); negate(t1, t1); x = M[i].elts() + (k+1); y = M[k].elts() + (k+1); long T1 = rep(t1); double t1pinv = T1*pinv; long T2; for (j = k+1; j <= n; j++, x++, y++) { // *x = *x + (*y)*t1 T2 = MulMod2(rep(*y), T1, p, t1pinv); x->LoopHole() = AddMod(rep(*x), T2, p); } } } else { clear(d); return; } } X.SetLength(n); for (i = n-1; i >= 0; i--) { clear(t1); for (j = i+1; j < n; j++) { mul(t2, X[j], M[i][j]); add(t1, t1, t2); } sub(t1, M[i][n], t1); mul(X[i], t1, M[i][i]); } d = det;}void inv(zz_p& d, mat_zz_p& X, const mat_zz_p& A){ long n = A.NumRows(); if (A.NumCols() != n) Error("inv: nonsquare matrix"); if (n == 0) { set(d); X.SetDims(0, 0); return; } long i, j, k, pos; zz_p t1, t2, t3; zz_p *x, *y; mat_zz_p M; M.SetDims(n, 2*n); for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { M[i][j] = A[i][j]; clear(M[i][n+j]); } set(M[i][n+i]); } zz_p det; set(det); long p = zz_p::modulus(); double pinv = zz_p::ModulusInverse(); for (k = 0; k < n; k++) { pos = -1; for (i = k; i < n; i++) { if (!IsZero(M[i][k])) { pos = i; break; } } if (pos != -1) { if (k != pos) { swap(M[pos], M[k]); negate(det, det); } mul(det, det, M[k][k]); inv(t3, M[k][k]); M[k][k] = t3; for (i = k+1; i < n; i++) { // M[i] = M[i] - M[k]*M[i,k]*t3 mul(t1, M[i][k], t3); negate(t1, t1); x = M[i].elts() + (k+1); y = M[k].elts() + (k+1); long T1 = rep(t1); double t1pinv = T1*pinv; long T2; for (j = k+1; j < 2*n; j++, x++, y++) { // *x = *x + (*y)*t1 T2 = MulMod2(rep(*y), T1, p, t1pinv); x->LoopHole() = AddMod(rep(*x), T2, p); } } } else { clear(d); return; } } X.SetDims(n, n); for (k = 0; k < n; k++) { for (i = n-1; i >= 0; i--) { clear(t1); for (j = i+1; j < n; j++) { mul(t2, X[j][k], M[i][j]); add(t1, t1, t2); } sub(t1, M[i][n+k], t1); mul(X[i][k], t1, M[i][i]); } } d = det;}long gauss(mat_zz_p& M, long w){ long k, l; long i, j; long pos; zz_p t1, t2, t3; zz_p *x, *y; long n = M.NumRows(); long m = M.NumCols(); if (w < 0 || w > m) Error("gauss: bad args"); long p = zz_p::modulus(); double pinv = zz_p::ModulusInverse(); long T1, T2; double T1pinv; l = 0; for (k = 0; k < w && l < n; k++) { pos = -1; for (i = l; i < n; i++) { if (!IsZero(M[i][k])) { pos = i; break; } } if (pos != -1) { swap(M[pos], M[l]); inv(t3, M[l][k]); negate(t3, t3); for (i = l+1; i < n; i++) { // M[i] = M[i] + M[l]*M[i,k]*t3 mul(t1, M[i][k], t3); T1 = rep(t1); T1pinv = ((double) T1)*pinv; clear(M[i][k]); x = M[i].elts() + (k+1); y = M[l].elts() + (k+1); for (j = k+1; j < m; j++, x++, y++) { // *x = *x + (*y)*t1 T2 = MulMod2(rep(*y), T1, p, T1pinv); T2 = AddMod(T2, rep(*x), p); (*x).LoopHole() = T2; } } l++; } } return l;}long gauss(mat_zz_p& M){ return gauss(M, M.NumCols());}void image(mat_zz_p& X, const mat_zz_p& A){ mat_zz_p M; M = A; long r = gauss(M); M.SetDims(r, M.NumCols()); X = M;}void kernel(mat_zz_p& X, const mat_zz_p& A){ long m = A.NumRows(); long n = A.NumCols(); mat_zz_p M; long r; transpose(M, A); r = gauss(M); X.SetDims(m-r, m); long i, j, k, s; zz_p t1, t2; vec_long D; D.SetLength(m); for (j = 0; j < m; j++) D[j] = -1; vec_zz_p inverses; inverses.SetLength(m); j = -1; for (i = 0; i < r; i++) { do { j++; } while (IsZero(M[i][j])); D[j] = i; inv(inverses[j], M[i][j]); } for (k = 0; k < m-r; k++) { vec_zz_p& v = X[k]; long pos = 0; for (j = m-1; j >= 0; j--) { if (D[j] == -1) { if (pos == k) set(v[j]); else clear(v[j]); pos++; } else { i = D[j]; clear(t1); for (s = j+1; s < m; s++) { mul(t2, v[s], M[i][s]); add(t1, t1, t2); } mul(t1, t1, inverses[j]); negate(v[j], t1); } } }} void mul(mat_zz_p& X, const mat_zz_p& A, zz_p b){ long n = A.NumRows(); long m = A.NumCols(); X.SetDims(n, m); long i, j; for (i = 0; i < n; i++) for (j = 0; j < m; j++) mul(X[i][j], A[i][j], b);}void mul(mat_zz_p& X, const mat_zz_p& A, long b_in){ NTL_zz_pRegister(b); b = b_in; long n = A.NumRows(); long m = A.NumCols(); X.SetDims(n, m); long i, j; for (i = 0; i < n; i++) for (j = 0; j < m; j++) mul(X[i][j], A[i][j], b);}void diag(mat_zz_p& X, long n, zz_p d) { X.SetDims(n, n); long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) if (i == j) X(i, j) = d; else clear(X(i, j)); } long IsDiag(const mat_zz_p& A, long n, zz_p d){ if (A.NumRows() != n || A.NumCols() != n) return 0; long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) if (i != j) { if (!IsZero(A(i, j))) return 0; } else { if (A(i, j) != d) return 0; } return 1;}void negate(mat_zz_p& X, const mat_zz_p& A){ long n = A.NumRows(); long m = A.NumCols(); X.SetDims(n, m); long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= m; j++) negate(X(i,j), A(i,j));}long IsZero(const mat_zz_p& a){ long n = a.NumRows(); long i; for (i = 0; i < n; i++) if (!IsZero(a[i])) return 0; return 1;}void clear(mat_zz_p& x){ long n = x.NumRows(); long i; for (i = 0; i < n; i++) clear(x[i]);}mat_zz_p operator+(const mat_zz_p& a, const mat_zz_p& b){ mat_zz_p res; add(res, a, b); NTL_OPT_RETURN(mat_zz_p, res);}mat_zz_p operator*(const mat_zz_p& a, const mat_zz_p& b){ mat_zz_p res; mul_aux(res, a, b); NTL_OPT_RETURN(mat_zz_p, res);}mat_zz_p operator-(const mat_zz_p& a, const mat_zz_p& b){ mat_zz_p res; sub(res, a, b); NTL_OPT_RETURN(mat_zz_p, res);}mat_zz_p operator-(const mat_zz_p& a){ mat_zz_p res; negate(res, a); NTL_OPT_RETURN(mat_zz_p, res);}vec_zz_p operator*(const mat_zz_p& a, const vec_zz_p& b){ vec_zz_p res; mul_aux(res, a, b); NTL_OPT_RETURN(vec_zz_p, res);}vec_zz_p operator*(const vec_zz_p& a, const mat_zz_p& b){ vec_zz_p res; mul_aux(res, a, b); NTL_OPT_RETURN(vec_zz_p, res);}void inv(mat_zz_p& X, const mat_zz_p& A){ zz_p d; inv(d, X, A); if (d == 0) Error("inv: non-invertible matrix");}void power(mat_zz_p& X, const mat_zz_p& A, const ZZ& e){ if (A.NumRows() != A.NumCols()) Error("power: non-square matrix"); if (e == 0) { ident(X, A.NumRows()); return; } mat_zz_p T1, T2; long i, k; k = NumBits(e); T1 = A; for (i = k-2; i >= 0; i--) { sqr(T2, T1); if (bit(e, i)) mul(T1, T2, A); else T1 = T2; } if (e < 0) inv(X, T1); else X = T1;}NTL_END_IMPL
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -