⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mat_lzz_p.c

📁 密码大家Shoup写的数论算法c语言实现
💻 C
字号:
#include <NTL/mat_lzz_p.h>#include <NTL/new.h>NTL_START_IMPLNTL_matrix_impl(zz_p,vec_zz_p,vec_vec_zz_p,mat_zz_p)NTL_io_matrix_impl(zz_p,vec_zz_p,vec_vec_zz_p,mat_zz_p)NTL_eq_matrix_impl(zz_p,vec_zz_p,vec_vec_zz_p,mat_zz_p)  void add(mat_zz_p& X, const mat_zz_p& A, const mat_zz_p& B)  {     long n = A.NumRows();     long m = A.NumCols();       if (B.NumRows() != n || B.NumCols() != m)         Error("matrix add: dimension mismatch");       X.SetDims(n, m);       long i, j;     for (i = 1; i <= n; i++)         for (j = 1; j <= m; j++)           add(X(i,j), A(i,j), B(i,j));  }    void sub(mat_zz_p& X, const mat_zz_p& A, const mat_zz_p& B)  {     long n = A.NumRows();     long m = A.NumCols();       if (B.NumRows() != n || B.NumCols() != m)        Error("matrix sub: dimension mismatch");       X.SetDims(n, m);       long i, j;     for (i = 1; i <= n; i++)        for (j = 1; j <= m; j++)           sub(X(i,j), A(i,j), B(i,j));  }    void mul_aux(mat_zz_p& X, const mat_zz_p& A, const mat_zz_p& B)  {     long n = A.NumRows();     long l = A.NumCols();     long m = B.NumCols();       if (l != B.NumRows())        Error("matrix mul: dimension mismatch");       X.SetDims(n, m);       long i, j, k;     zz_p acc, tmp;       for (i = 1; i <= n; i++) {        for (j = 1; j <= m; j++) {           clear(acc);           for(k = 1; k <= l; k++) {              mul(tmp, A(i,k), B(k,j));              add(acc, acc, tmp);           }           X(i,j) = acc;        }     }  }      void mul(mat_zz_p& X, const mat_zz_p& A, const mat_zz_p& B)  {     if (&X == &A || &X == &B) {        mat_zz_p tmp;        mul_aux(tmp, A, B);        X = tmp;     }     else        mul_aux(X, A, B);  }      void mul_aux(vec_zz_p& x, const mat_zz_p& A, const vec_zz_p& b){   long n = A.NumRows();   long l = A.NumCols();   if (l != b.length())      Error("matrix mul: dimension mismatch");   x.SetLength(n);   long p = zz_p::modulus();   double pinv = zz_p::ModulusInverse();   long i, k;   long acc, tmp;   const zz_p* bp = b.elts();   for (i = 0; i < n; i++) {      acc = 0;      const zz_p* ap = A[i].elts();      for (k = 0; k < l; k++) {         tmp = MulMod(rep(ap[k]), rep(bp[k]), p, pinv);         acc = AddMod(acc, tmp, p);      }       x[i].LoopHole() = acc;   }}  void mul(vec_zz_p& x, const mat_zz_p& A, const vec_zz_p& b)  {     if (&b == &x || A.position(b) != -1) {      vec_zz_p tmp;      mul_aux(tmp, A, b);      x = tmp;   }   else      mul_aux(x, A, b);}  staticvoid mul_aux(vec_zz_p& x, const vec_zz_p& a, const mat_zz_p& B)  {     long n = B.NumRows();     long l = B.NumCols();       if (n != a.length())        Error("matrix mul: dimension mismatch");       x.SetLength(l);       long i, k;     zz_p acc, tmp;       for (i = 1; i <= l; i++) {        clear(acc);        for (k = 1; k <= n; k++) {           mul(tmp, a(k), B(k,i));         add(acc, acc, tmp);        }        x(i) = acc;     }  }  void mul(vec_zz_p& x, const vec_zz_p& a, const mat_zz_p& B){   if (&a == &x || B.position(a) != -1) {      vec_zz_p tmp;      mul_aux(tmp, a, B);      x = tmp;   }   else      mul_aux(x, a, B);}       void ident(mat_zz_p& X, long n)  {     X.SetDims(n, n);     long i, j;       for (i = 1; i <= n; i++)        for (j = 1; j <= n; j++)           if (i == j)              set(X(i, j));           else              clear(X(i, j));  } void determinant(zz_p& d, const mat_zz_p& M_in){   long k, n;   long i, j;   long pos;   zz_p t1, t2, t3;   zz_p *x, *y;   mat_zz_p M;   M = M_in;   n = M.NumRows();   if (M.NumCols() != n)      Error("determinant: nonsquare matrix");   if (n == 0) {      set(d);      return;   }   zz_p det;   set(det);   long p = zz_p::modulus();   double pinv = zz_p::ModulusInverse();   for (k = 0; k < n; k++) {      pos = -1;      for (i = k; i < n; i++) {         if (!IsZero(M[i][k])) {            pos = i;            break;         }      }      if (pos != -1) {         if (k != pos) {            swap(M[pos], M[k]);            negate(det, det);         }         mul(det, det, M[k][k]);         inv(t3, M[k][k]);         for (i = k+1; i < n; i++) {            // M[i] = M[i] - M[k]*M[i,k]*t3            mul(t1, M[i][k], t3);            negate(t1, t1);            x = M[i].elts() + (k+1);            y = M[k].elts() + (k+1);            long T1 = rep(t1);            double t1pinv = T1*pinv;             long T2;            for (j = k+1; j < n; j++, x++, y++) {               // *x = *x + (*y)*t1               T2 = MulMod2(rep(*y), T1, p, t1pinv);               x->LoopHole() = AddMod(rep(*x), T2, p);             }         }      }      else {         clear(d);         return;      }   }   d = det;}long IsIdent(const mat_zz_p& A, long n){   if (A.NumRows() != n || A.NumCols() != n)      return 0;   long i, j;   for (i = 1; i <= n; i++)      for (j = 1; j <= n; j++)         if (i != j) {            if (!IsZero(A(i, j))) return 0;         }         else {            if (!IsOne(A(i, j))) return 0;         }   return 1;}            void transpose(mat_zz_p& X, const mat_zz_p& A){   long n = A.NumRows();   long m = A.NumCols();   long i, j;   if (&X == & A) {      if (n == m)         for (i = 1; i <= n; i++)            for (j = i+1; j <= n; j++)               swap(X(i, j), X(j, i));      else {         mat_zz_p tmp;         tmp.SetDims(m, n);         for (i = 1; i <= n; i++)            for (j = 1; j <= m; j++)               tmp(j, i) = A(i, j);         X.kill();         X = tmp;      }   }   else {      X.SetDims(m, n);      for (i = 1; i <= n; i++)         for (j = 1; j <= m; j++)            X(j, i) = A(i, j);   }}   void solve(zz_p& d, vec_zz_p& X,            const mat_zz_p& A, const vec_zz_p& b){   long n = A.NumRows();   if (A.NumCols() != n)      Error("solve: nonsquare matrix");   if (b.length() != n)      Error("solve: dimension mismatch");   if (n == 0) {      set(d);      X.SetLength(0);      return;   }   long i, j, k, pos;   zz_p t1, t2, t3;   zz_p *x, *y;   mat_zz_p M;   M.SetDims(n, n+1);   for (i = 0; i < n; i++) {      for (j = 0; j < n; j++)          M[i][j] = A[j][i];      M[i][n] = b[i];   }   zz_p det;   set(det);   long p = zz_p::modulus();   double pinv = zz_p::ModulusInverse();   for (k = 0; k < n; k++) {      pos = -1;      for (i = k; i < n; i++) {         if (!IsZero(M[i][k])) {            pos = i;            break;         }      }      if (pos != -1) {         if (k != pos) {            swap(M[pos], M[k]);            negate(det, det);         }         mul(det, det, M[k][k]);         inv(t3, M[k][k]);         M[k][k] = t3;         for (i = k+1; i < n; i++) {            // M[i] = M[i] - M[k]*M[i,k]*t3            mul(t1, M[i][k], t3);            negate(t1, t1);            x = M[i].elts() + (k+1);            y = M[k].elts() + (k+1);            long T1 = rep(t1);            double t1pinv = T1*pinv;            long T2;            for (j = k+1; j <= n; j++, x++, y++) {               // *x = *x + (*y)*t1               T2 = MulMod2(rep(*y), T1, p, t1pinv);               x->LoopHole() = AddMod(rep(*x), T2, p);            }         }      }      else {         clear(d);         return;      }   }   X.SetLength(n);   for (i = n-1; i >= 0; i--) {      clear(t1);      for (j = i+1; j < n; j++) {         mul(t2, X[j], M[i][j]);         add(t1, t1, t2);      }      sub(t1, M[i][n], t1);      mul(X[i], t1, M[i][i]);   }   d = det;}void inv(zz_p& d, mat_zz_p& X, const mat_zz_p& A){   long n = A.NumRows();   if (A.NumCols() != n)      Error("inv: nonsquare matrix");   if (n == 0) {      set(d);      X.SetDims(0, 0);      return;   }   long i, j, k, pos;   zz_p t1, t2, t3;   zz_p *x, *y;   mat_zz_p M;   M.SetDims(n, 2*n);   for (i = 0; i < n; i++) {      for (j = 0; j < n; j++) {         M[i][j] = A[i][j];         clear(M[i][n+j]);      }      set(M[i][n+i]);   }   zz_p det;   set(det);   long p = zz_p::modulus();   double pinv = zz_p::ModulusInverse();   for (k = 0; k < n; k++) {      pos = -1;      for (i = k; i < n; i++) {         if (!IsZero(M[i][k])) {            pos = i;            break;         }      }      if (pos != -1) {         if (k != pos) {            swap(M[pos], M[k]);            negate(det, det);         }         mul(det, det, M[k][k]);         inv(t3, M[k][k]);         M[k][k] = t3;         for (i = k+1; i < n; i++) {            // M[i] = M[i] - M[k]*M[i,k]*t3            mul(t1, M[i][k], t3);            negate(t1, t1);            x = M[i].elts() + (k+1);            y = M[k].elts() + (k+1);            long T1 = rep(t1);            double t1pinv = T1*pinv;            long T2;            for (j = k+1; j < 2*n; j++, x++, y++) {               // *x = *x + (*y)*t1               T2 = MulMod2(rep(*y), T1, p, t1pinv);               x->LoopHole() = AddMod(rep(*x), T2, p);            }         }      }      else {         clear(d);         return;      }   }   X.SetDims(n, n);   for (k = 0; k < n; k++) {      for (i = n-1; i >= 0; i--) {         clear(t1);         for (j = i+1; j < n; j++) {            mul(t2, X[j][k], M[i][j]);            add(t1, t1, t2);         }         sub(t1, M[i][n+k], t1);         mul(X[i][k], t1, M[i][i]);      }   }   d = det;}long gauss(mat_zz_p& M, long w){   long k, l;   long i, j;   long pos;   zz_p t1, t2, t3;   zz_p *x, *y;   long n = M.NumRows();   long m = M.NumCols();   if (w < 0 || w > m)      Error("gauss: bad args");   long p = zz_p::modulus();   double pinv = zz_p::ModulusInverse();   long T1, T2;   double T1pinv;   l = 0;   for (k = 0; k < w && l < n; k++) {      pos = -1;      for (i = l; i < n; i++) {         if (!IsZero(M[i][k])) {            pos = i;            break;         }      }      if (pos != -1) {         swap(M[pos], M[l]);         inv(t3, M[l][k]);         negate(t3, t3);         for (i = l+1; i < n; i++) {            // M[i] = M[i] + M[l]*M[i,k]*t3            mul(t1, M[i][k], t3);            T1 = rep(t1);            T1pinv = ((double) T1)*pinv;            clear(M[i][k]);            x = M[i].elts() + (k+1);            y = M[l].elts() + (k+1);            for (j = k+1; j < m; j++, x++, y++) {               // *x = *x + (*y)*t1               T2 = MulMod2(rep(*y), T1, p, T1pinv);               T2 = AddMod(T2, rep(*x), p);               (*x).LoopHole() = T2;            }         }         l++;      }   }   return l;}long gauss(mat_zz_p& M){   return gauss(M, M.NumCols());}void image(mat_zz_p& X, const mat_zz_p& A){   mat_zz_p M;   M = A;   long r = gauss(M);   M.SetDims(r, M.NumCols());   X = M;}void kernel(mat_zz_p& X, const mat_zz_p& A){   long m = A.NumRows();   long n = A.NumCols();   mat_zz_p M;   long r;   transpose(M, A);   r = gauss(M);   X.SetDims(m-r, m);   long i, j, k, s;   zz_p t1, t2;   vec_long D;   D.SetLength(m);   for (j = 0; j < m; j++) D[j] = -1;   vec_zz_p inverses;   inverses.SetLength(m);   j = -1;   for (i = 0; i < r; i++) {      do {         j++;      } while (IsZero(M[i][j]));      D[j] = i;      inv(inverses[j], M[i][j]);    }   for (k = 0; k < m-r; k++) {      vec_zz_p& v = X[k];      long pos = 0;      for (j = m-1; j >= 0; j--) {         if (D[j] == -1) {            if (pos == k)               set(v[j]);            else               clear(v[j]);            pos++;         }         else {            i = D[j];            clear(t1);            for (s = j+1; s < m; s++) {               mul(t2, v[s], M[i][s]);               add(t1, t1, t2);            }            mul(t1, t1, inverses[j]);            negate(v[j], t1);         }      }   }}   void mul(mat_zz_p& X, const mat_zz_p& A, zz_p b){   long n = A.NumRows();   long m = A.NumCols();   X.SetDims(n, m);   long i, j;   for (i = 0; i < n; i++)      for (j = 0; j < m; j++)         mul(X[i][j], A[i][j], b);}void mul(mat_zz_p& X, const mat_zz_p& A, long b_in){   NTL_zz_pRegister(b);   b = b_in;   long n = A.NumRows();   long m = A.NumCols();   X.SetDims(n, m);   long i, j;   for (i = 0; i < n; i++)      for (j = 0; j < m; j++)         mul(X[i][j], A[i][j], b);}void diag(mat_zz_p& X, long n, zz_p d)  {     X.SetDims(n, n);     long i, j;       for (i = 1; i <= n; i++)        for (j = 1; j <= n; j++)           if (i == j)              X(i, j) = d;           else              clear(X(i, j));  } long IsDiag(const mat_zz_p& A, long n, zz_p d){   if (A.NumRows() != n || A.NumCols() != n)      return 0;   long i, j;   for (i = 1; i <= n; i++)      for (j = 1; j <= n; j++)         if (i != j) {            if (!IsZero(A(i, j))) return 0;         }         else {            if (A(i, j) != d) return 0;         }   return 1;}void negate(mat_zz_p& X, const mat_zz_p& A){   long n = A.NumRows();   long m = A.NumCols();   X.SetDims(n, m);   long i, j;   for (i = 1; i <= n; i++)      for (j = 1; j <= m; j++)         negate(X(i,j), A(i,j));}long IsZero(const mat_zz_p& a){   long n = a.NumRows();   long i;   for (i = 0; i < n; i++)      if (!IsZero(a[i]))         return 0;   return 1;}void clear(mat_zz_p& x){   long n = x.NumRows();   long i;   for (i = 0; i < n; i++)      clear(x[i]);}mat_zz_p operator+(const mat_zz_p& a, const mat_zz_p& b){   mat_zz_p res;   add(res, a, b);   NTL_OPT_RETURN(mat_zz_p, res);}mat_zz_p operator*(const mat_zz_p& a, const mat_zz_p& b){   mat_zz_p res;   mul_aux(res, a, b);   NTL_OPT_RETURN(mat_zz_p, res);}mat_zz_p operator-(const mat_zz_p& a, const mat_zz_p& b){   mat_zz_p res;   sub(res, a, b);   NTL_OPT_RETURN(mat_zz_p, res);}mat_zz_p operator-(const mat_zz_p& a){   mat_zz_p res;   negate(res, a);   NTL_OPT_RETURN(mat_zz_p, res);}vec_zz_p operator*(const mat_zz_p& a, const vec_zz_p& b){   vec_zz_p res;   mul_aux(res, a, b);   NTL_OPT_RETURN(vec_zz_p, res);}vec_zz_p operator*(const vec_zz_p& a, const mat_zz_p& b){   vec_zz_p res;   mul_aux(res, a, b);   NTL_OPT_RETURN(vec_zz_p, res);}void inv(mat_zz_p& X, const mat_zz_p& A){   zz_p d;   inv(d, X, A);   if (d == 0) Error("inv: non-invertible matrix");}void power(mat_zz_p& X, const mat_zz_p& A, const ZZ& e){   if (A.NumRows() != A.NumCols()) Error("power: non-square matrix");   if (e == 0) {      ident(X, A.NumRows());      return;   }   mat_zz_p T1, T2;   long i, k;   k = NumBits(e);   T1 = A;   for (i = k-2; i >= 0; i--) {      sqr(T2, T1);      if (bit(e, i))         mul(T1, T2, A);      else         T1 = T2;   }   if (e < 0)      inv(X, T1);   else      X = T1;}NTL_END_IMPL

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -