⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zz_pxfactoring.c

📁 密码大家Shoup写的数论算法c语言实现
💻 C
📖 第 1 页 / 共 3 页
字号:
{   long n = deg(f);   if (n <= 0) return 0;   if (n == 1) return 1;   const ZZ& p = ZZ_p::modulus();   ZZ_pXModulus F;   build(F, f);   ZZ_pX b, r, s;   PowerXMod(b, p, F);   long i;   for (i = 0; i < iter; i++) {      random(r, n);      TraceMap(s, r, n, F, b);      if (deg(s) > 0) return 0;   }   if (p >= n) return 1;   long pp;   conv(pp, p);      if (n % pp != 0) return 1;   PowerCompose(s, b, n/pp, F);   return !IsX(s);}long ZZ_pX_BlockingFactor = 10;void DDF(vec_pair_ZZ_pX_long& factors, const ZZ_pX& ff, const ZZ_pX& hh,          long verbose){   ZZ_pX f = ff;   ZZ_pX h = hh;   if (!IsOne(LeadCoeff(f)))      Error("DDF: bad args");   factors.SetLength(0);   if (deg(f) == 0)      return;   if (deg(f) == 1) {      AddFactor(factors, f, 1, verbose);      return;   }   long CompTableSize = 2*SqrRoot(deg(f));    long GCDTableSize = ZZ_pX_BlockingFactor;   ZZ_pXModulus F;   build(F, f);   ZZ_pXArgument H;   build(H, h, F, min(CompTableSize, deg(f)));   long i, d, limit, old_n;   ZZ_pX g, X;   vec_ZZ_pX tbl(INIT_SIZE, GCDTableSize);   SetX(X);   i = 0;   g = h;   d = 1;   limit = GCDTableSize;   while (2*d <= deg(f)) {      old_n = deg(f);      sub(tbl[i], g, X);      i++;      if (i == limit) {         ProcessTable(f, factors, F, i, tbl, d, verbose);         i = 0;      }      d = d + 1;      if (2*d <= deg(f)) {         // we need to go further         if (deg(f) < old_n) {            // f has changed             build(F, f);            rem(h, h, f);            rem(g, g, f);            build(H, h, F, min(CompTableSize, deg(f)));         }         CompMod(g, g, H, F);      }   }   ProcessTable(f, factors, F, i, tbl, d-1, verbose);   if (!IsOne(f)) AddFactor(factors, f, deg(f), verbose);}void RootEDF(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose){   vec_ZZ_p roots;   double t;   if (verbose) { cerr << "finding roots..."; t = GetTime(); }   FindRoots(roots, f);   if (verbose) { cerr << (GetTime()-t) << "\n"; }   long r = roots.length();   factors.SetLength(r);   for (long j = 0; j < r; j++) {      SetX(factors[j]);      sub(factors[j], factors[j], roots[j]);   }}staticvoid EDFSplit(vec_ZZ_pX& v, const ZZ_pX& f, const ZZ_pX& b, long d){   ZZ_pX a, g, h;   ZZ_pXModulus F;   vec_ZZ_p roots;      build(F, f);   long n = F.n;   long r = n/d;   random(a, n);   TraceMap(g, a, d, F, b);   MinPolyMod(h, g, F, r);   FindRoots(roots, h);   FindFactors(v, f, g, roots);}staticvoid RecEDF(vec_ZZ_pX& factors, const ZZ_pX& f, const ZZ_pX& b, long d,            long verbose){   vec_ZZ_pX v;   long i;   ZZ_pX bb;   if (verbose) cerr << "+";   EDFSplit(v, f, b, d);   for (i = 0; i < v.length(); i++) {      if (deg(v[i]) == d) {         append(factors, v[i]);      }      else {         ZZ_pX bb;         rem(bb, b, v[i]);         RecEDF(factors, v[i], bb, d, verbose);      }   }}         void EDF(vec_ZZ_pX& factors, const ZZ_pX& ff, const ZZ_pX& bb,         long d, long verbose){   ZZ_pX f = ff;   ZZ_pX b = bb;   if (!IsOne(LeadCoeff(f)))      Error("EDF: bad args");   long n = deg(f);   long r = n/d;   if (r == 0) {      factors.SetLength(0);      return;   }   if (r == 1) {      factors.SetLength(1);      factors[0] = f;      return;   }   if (d == 1) {      RootEDF(factors, f, verbose);      return;   }      double t;   if (verbose) {       cerr << "computing EDF(" << d << "," << r << ")...";       t = GetTime();    }   factors.SetLength(0);   RecEDF(factors, f, b, d, verbose);   if (verbose) cerr << (GetTime()-t) << "\n";}void SFCanZass(vec_ZZ_pX& factors, const ZZ_pX& ff, long verbose){   ZZ_pX f = ff;   if (!IsOne(LeadCoeff(f)))      Error("SFCanZass: bad args");   if (deg(f) == 0) {      factors.SetLength(0);      return;   }   if (deg(f) == 1) {      factors.SetLength(1);      factors[0] = f;      return;   }   factors.SetLength(0);   double t;   const ZZ& p = ZZ_p::modulus();      ZZ_pXModulus F;   build(F, f);   ZZ_pX h;   if (verbose) { cerr << "computing X^p..."; t = GetTime(); }   PowerXMod(h, p, F);   if (verbose) { cerr << (GetTime()-t) << "\n"; }   vec_pair_ZZ_pX_long u;   if (verbose) { cerr << "computing DDF..."; t = GetTime(); }   NewDDF(u, f, h, verbose);   if (verbose) {       t = GetTime()-t;       cerr << "DDF time: " << t << "\n";   }   ZZ_pX hh;   vec_ZZ_pX v;   long i;   for (i = 0; i < u.length(); i++) {      const ZZ_pX& g = u[i].a;      long d = u[i].b;      long r = deg(g)/d;      if (r == 1) {         // g is already irreducible         append(factors, g);      }      else {         // must perform EDF         if (d == 1) {            // root finding            RootEDF(v, g, verbose);            append(factors, v);         }         else {            // general case            rem(hh, h, g);            EDF(v, g, hh, d, verbose);            append(factors, v);         }      }   }}   void CanZass(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, long verbose){   if (!IsOne(LeadCoeff(f)))      Error("CanZass: bad args");   double t;   vec_pair_ZZ_pX_long sfd;   vec_ZZ_pX x;      if (verbose) { cerr << "square-free decomposition..."; t = GetTime(); }   SquareFreeDecomp(sfd, f);   if (verbose) cerr << (GetTime()-t) << "\n";   factors.SetLength(0);   long i, j;   for (i = 0; i < sfd.length(); i++) {      if (verbose) {         cerr << "factoring multiplicity " << sfd[i].b               << ", deg = " << deg(sfd[i].a) << "\n";      }      SFCanZass(x, sfd[i].a, verbose);      for (j = 0; j < x.length(); j++)         append(factors, cons(x[j], sfd[i].b));   }}void mul(ZZ_pX& f, const vec_pair_ZZ_pX_long& v){   long i, j, n;   n = 0;   for (i = 0; i < v.length(); i++)      n += v[i].b*deg(v[i].a);   ZZ_pX g(INIT_SIZE, n+1);   set(g);   for (i = 0; i < v.length(); i++)      for (j = 0; j < v[i].b; j++) {         mul(g, g, v[i].a);      }   f = g;}staticlong BaseCase(const ZZ_pX& h, long q, long a, const ZZ_pXModulus& F){   long b, e;   ZZ_pX lh(INIT_SIZE, F.n);   lh = h;   b = 1;   e = 0;   while (e < a-1 && !IsX(lh)) {      e++;      b *= q;      PowerCompose(lh, lh, q, F);   }   if (!IsX(lh)) b *= q;   return b;}staticvoid TandemPowerCompose(ZZ_pX& y1, ZZ_pX& y2, const ZZ_pX& h,                         long q1, long q2, const ZZ_pXModulus& F){   ZZ_pX z(INIT_SIZE, F.n);   long sw;   z = h;   SetX(y1);   SetX(y2);   while (q1 || q2) {      sw = 0;      if (q1 > 1 || q2 > 1) sw = 4;      if (q1 & 1) {         if (IsX(y1))            y1 = z;         else            sw = sw | 2;      }      if (q2 & 1) {         if (IsX(y2))            y2 = z;         else            sw = sw | 1;      }      switch (sw) {      case 0:         break;      case 1:         CompMod(y2, y2, z, F);         break;      case 2:         CompMod(y1, y1, z, F);         break;      case 3:         Comp2Mod(y1, y2, y1, y2, z, F);         break;      case 4:         CompMod(z, z, z, F);         break;      case 5:         Comp2Mod(z, y2, z, y2, z, F);         break;      case 6:         Comp2Mod(z, y1, z, y1, z, F);         break;      case 7:         Comp3Mod(z, y1, y2, z, y1, y2, z, F);         break;      }      q1 = q1 >> 1;      q2 = q2 >> 1;   }}staticlong RecComputeDegree(long u, const ZZ_pX& h, const ZZ_pXModulus& F,                      FacVec& fvec){   if (IsX(h)) return 1;   if (fvec[u].link == -1) return BaseCase(h, fvec[u].q, fvec[u].a, F);   ZZ_pX h1, h2;   long q1, q2, r1, r2;   q1 = fvec[fvec[u].link].val;    q2 = fvec[fvec[u].link+1].val;   TandemPowerCompose(h1, h2, h, q1, q2, F);   r1 = RecComputeDegree(fvec[u].link, h2, F, fvec);   r2 = RecComputeDegree(fvec[u].link+1, h1, F, fvec);   return r1*r2;}   long ComputeDegree(const ZZ_pX& h, const ZZ_pXModulus& F)   // f = F.f is assumed to be an "equal degree" polynomial   // h = X^p mod f   // the common degree of the irreducible factors of f is computed{   if (F.n == 1 || IsX(h)) return 1;   FacVec fvec;   FactorInt(fvec, F.n);   return RecComputeDegree(fvec.length()-1, h, F, fvec);}long ProbComputeDegree(const ZZ_pX& h, const ZZ_pXModulus& F){   if (F.n == 1 || IsX(h))      return 1;   long n = F.n;   ZZ_pX P1, P2, P3;   random(P1, n);   TraceMap(P2, P1, n, F, h);   ProbMinPolyMod(P3, P2, F, n/2);   long r = deg(P3);   if (r <= 0 || n % r != 0)      return 0;   else      return n/r;}void FindRoot(ZZ_p& root, const ZZ_pX& ff)// finds a root of ff.// assumes that ff is monic and splits into distinct linear factors{   ZZ_pXModulus F;   ZZ_pX h, h1, f;   ZZ_p r;   ZZ p1;   f = ff;      if (!IsOne(LeadCoeff(f)))      Error("FindRoot: bad args");   if (deg(f) == 0)      Error("FindRoot: bad args");   RightShift(p1, ZZ_p::modulus(), 1);   h1 = 1;   while (deg(f) > 1) {      build(F, f);      random(r);      PowerXPlusAMod(h, r, p1, F);      sub(h, h, h1);      GCD(h, h, f);      if (deg(h) > 0 && deg(h) < deg(f)) {         if (deg(h) > deg(f)/2)            div(f, f, h);         else            f = h;      }   }   negate(root, ConstTerm(f));}staticlong power(long a, long e){   long i, res;   res = 1;   for (i = 1; i <= e; i++)      res = res * a;   return res;}staticlong IrredBaseCase(const ZZ_pX& h, long q, long a, const ZZ_pXModulus& F){   long e;   ZZ_pX X, s, d;   e = power(q, a-1);   PowerCompose(s, h, e, F);   SetX(X);   sub(s, s, X);   GCD(d, F.f, s);   return IsOne(d);}staticlong RecIrredTest(long u, const ZZ_pX& h, const ZZ_pXModulus& F,                 const FacVec& fvec){   long  q1, q2;   ZZ_pX h1, h2;   if (IsX(h)) return 0;   if (fvec[u].link == -1) {      return IrredBaseCase(h, fvec[u].q, fvec[u].a, F);   }   q1 = fvec[fvec[u].link].val;    q2 = fvec[fvec[u].link+1].val;   TandemPowerCompose(h1, h2, h, q1, q2, F);   return RecIrredTest(fvec[u].link, h2, F, fvec)           && RecIrredTest(fvec[u].link+1, h1, F, fvec);}long DetIrredTest(const ZZ_pX& f){   if (deg(f) <= 0) return 0;   if (deg(f) == 1) return 1;   ZZ_pXModulus F;   build(F, f);      ZZ_pX h;   PowerXMod(h, ZZ_p::modulus(), F);   ZZ_pX s;   PowerCompose(s, h, F.n, F);   if (!IsX(s)) return 0;   FacVec fvec;   FactorInt(fvec, F.n);   return RecIrredTest(fvec.length()-1, h, F, fvec);}long IterIrredTest(const ZZ_pX& f){   if (deg(f) <= 0) return 0;   if (deg(f) == 1) return 1;   ZZ_pXModulus F;   build(F, f);      ZZ_pX h;   PowerXMod(h, ZZ_p::modulus(), F);   long CompTableSize = 2*SqrRoot(deg(f));   ZZ_pXArgument H;   build(H, h, F, CompTableSize);   long i, d, limit, limit_sqr;   ZZ_pX g, X, t, prod;   SetX(X);   i = 0;   g = h;   d = 1;   limit = 2;   limit_sqr = limit*limit;   set(prod);   while (2*d <= deg(f)) {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -