⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zzx1.c

📁 密码大家Shoup写的数论算法c语言实现
💻 C
📖 第 1 页 / 共 3 页
字号:
#include <NTL/ZZX.h>#include <NTL/new.h>NTL_START_IMPLvoid conv(zz_pX& x, const ZZX& a){   conv(x.rep, a.rep);   x.normalize();}void conv(ZZX& x, const zz_pX& a){   conv(x.rep, a.rep);   x.normalize();}long CRT(ZZX& gg, ZZ& a, const zz_pX& G){   long n = gg.rep.length();   long p = zz_p::modulus();   ZZ new_a;   mul(new_a, a, p);   long a_inv;   a_inv = rem(a, p);   a_inv = InvMod(a_inv, p);   long p1;   p1 = p >> 1;   ZZ a1;   RightShift(a1, a, 1);   long p_odd = (p & 1);   long modified = 0;   long h;   ZZ ah;   long m = G.rep.length();   long max_mn = max(m, n);   gg.rep.SetLength(max_mn);   ZZ g;   long i;   for (i = 0; i < n; i++) {      if (!CRTInRange(gg.rep[i], a)) {         modified = 1;         rem(g, gg.rep[i], a);         if (g > a1) sub(g, g, a);      }      else         g = gg.rep[i];         h = rem(g, p);      if (i < m)         h = SubMod(rep(G.rep[i]), h, p);      else         h = NegateMod(h, p);      h = MulMod(h, a_inv, p);      if (h > p1)         h = h - p;         if (h != 0) {         modified = 1;         mul(ah, a, h);            if (!p_odd && g > 0 && (h == p1))            sub(g, g, ah);         else            add(g, g, ah);      }      gg.rep[i] = g;   }   for (; i < m; i++) {      h = rep(G.rep[i]);      h = MulMod(h, a_inv, p);      if (h > p1)         h = h - p;         modified = 1;      mul(g, a, h);      gg.rep[i] = g;   }   gg.normalize();   a = new_a;   return modified;}long CRT(ZZX& gg, ZZ& a, const ZZ_pX& G){   long n = gg.rep.length();   const ZZ& p = ZZ_p::modulus();   ZZ new_a;   mul(new_a, a, p);   ZZ a_inv;   rem(a_inv, a, p);   InvMod(a_inv, a_inv, p);   ZZ p1;   RightShift(p1, p, 1);   ZZ a1;   RightShift(a1, a, 1);   long p_odd = IsOdd(p);   long modified = 0;   ZZ h;   ZZ ah;   long m = G.rep.length();   long max_mn = max(m, n);   gg.rep.SetLength(max_mn);   ZZ g;   long i;   for (i = 0; i < n; i++) {      if (!CRTInRange(gg.rep[i], a)) {         modified = 1;         rem(g, gg.rep[i], a);         if (g > a1) sub(g, g, a);      }      else         g = gg.rep[i];         rem(h, g, p);      if (i < m)         SubMod(h, rep(G.rep[i]), h, p);      else         NegateMod(h, h, p);      MulMod(h, h, a_inv, p);      if (h > p1)         sub(h, h, p);         if (h != 0) {         modified = 1;         mul(ah, a, h);            if (!p_odd && g > 0 && (h == p1))            sub(g, g, ah);         else            add(g, g, ah);      }      gg.rep[i] = g;   }   for (; i < m; i++) {      h = rep(G.rep[i]);      MulMod(h, h, a_inv, p);      if (h > p1)         sub(h, h, p);         modified = 1;      mul(g, a, h);      gg.rep[i] = g;   }   gg.normalize();   a = new_a;   return modified;}/* Compute a = b * 2^l mod p, where p = 2^n+1. 0<=l<=n and 0<b<p are   assumed. */static void LeftRotate(ZZ& a, const ZZ& b, long l, const ZZ& p, long n){  if (l == 0) {    if (&a != &b) {      a = b;    }    return;  }  /* tmp := upper l bits of b */  static ZZ tmp;  RightShift(tmp, b, n - l);  /* a := 2^l * lower n - l bits of b */  trunc(a, b, n - l);  LeftShift(a, a, l);  /* a -= tmp */  sub(a, a, tmp);  if (sign(a) < 0) {    add(a, a, p);  }}/* Compute a = b * 2^l mod p, where p = 2^n+1. 0<=p<b is assumed. */static void Rotate(ZZ& a, const ZZ& b, long l, const ZZ& p, long n){  if (IsZero(b)) {    clear(a);    return;  }  /* l %= 2n */  if (l >= 0) {    l %= (n << 1);  } else {    l = (n << 1) - 1 - (-(l + 1) % (n << 1));  }  /* a = b * 2^l mod p */  if (l < n) {    LeftRotate(a, b, l, p, n);  } else {    LeftRotate(a, b, l - n, p, n);    SubPos(a, p, a);  }}/* Fast Fourier Transform. a is a vector of length 2^l, 2^l divides 2n,   p = 2^n+1, w = 2^r mod p is a primitive (2^l)th root of   unity. Returns a(1),a(w),...,a(w^{2^l-1}) mod p in bit-reverse   order. */static void fft(vec_ZZ& a, long r, long l, const ZZ& p, long n){  long round;  long off, i, j, e;  long halfsize;  ZZ tmp, tmp1;  for (round = 0; round < l; round++, r <<= 1) {    halfsize =  1L << (l - 1 - round);    for (i = (1L << round) - 1, off = 0; i >= 0; i--, off += halfsize) {      for (j = 0, e = 0; j < halfsize; j++, off++, e+=r) {	/* One butterfly : 	 ( a[off], a[off+halfsize] ) *= ( 1  w^{j2^round} )	                                ( 1 -w^{j2^round} ) */	/* tmp = a[off] - a[off + halfsize] mod p */	sub(tmp, a[off], a[off + halfsize]);	if (sign(tmp) < 0) {	  add(tmp, tmp, p);	}	/* a[off] += a[off + halfsize] mod p */	add(a[off], a[off], a[off + halfsize]);	sub(tmp1, a[off], p);	if (sign(tmp1) >= 0) {	  a[off] = tmp1;	}	/* a[off + halfsize] = tmp * w^{j2^round} mod p */	Rotate(a[off + halfsize], tmp, e, p, n);      }    }  }}/* Inverse FFT. r must be the same as in the call to FFT. Result is   by 2^l too large. */static void ifft(vec_ZZ& a, long r, long l, const ZZ& p, long n){  long round;  long off, i, j, e;  long halfsize;  ZZ tmp, tmp1;  for (round = l - 1, r <<= l - 1; round >= 0; round--, r >>= 1) {    halfsize = 1L << (l - 1 - round);    for (i = (1L << round) - 1, off = 0; i >= 0; i--, off += halfsize) {      for (j = 0, e = 0; j < halfsize; j++, off++, e+=r) {	/* One inverse butterfly : 	 ( a[off], a[off+halfsize] ) *= ( 1               1             )	                                ( w^{-j2^round}  -w^{-j2^round} ) */	/* a[off + halfsize] *= w^{-j2^round} mod p */	Rotate(a[off + halfsize], a[off + halfsize], -e, p, n);	/* tmp = a[off] - a[off + halfsize] */	sub(tmp, a[off], a[off + halfsize]);	/* a[off] += a[off + halfsize] mod p */	add(a[off], a[off], a[off + halfsize]);	sub(tmp1, a[off], p);	if (sign(tmp1) >= 0) {	  a[off] = tmp1;	}	/* a[off+halfsize] = tmp mod p */	if (sign(tmp) < 0) {	  add(a[off+halfsize], tmp, p);	} else {	  a[off+halfsize] = tmp;	}      }    }  }}/* Multiplication a la Schoenhage & Strassen, modulo a "Fermat" number   p = 2^{mr}+1, where m is a power of two and r is odd. Then w = 2^r   is a primitive 2mth root of unity, i.e., polynomials whose product   has degree less than 2m can be multiplied, provided that the   coefficients of the product polynomial are at most 2^{mr-1} in   absolute value. The algorithm is not called recursively;   coefficient arithmetic is done directly.*/void SSMul(ZZX& c, const ZZX& a, const ZZX& b){  long na = deg(a);  long nb = deg(b);  if (na <= 0 || nb <= 0) {    PlainMul(c, a, b);    return;  }  long n = na + nb; /* degree of the product */  /* Choose m and r suitably */  long l = NextPowerOfTwo(n + 1) - 1; /* 2^l <= n < 2^{l+1} */  long m2 = 1L << (l + 1); /* m2 = 2m = 2^{l+1} */  /* Bitlength of the product: if the coefficients of a are absolutely less     than 2^ka and the coefficients of b are absolutely less than 2^kb, then     the coefficients of ab are absolutely less than     (min(na,nb)+1)2^{ka+kb} <= 2^bound. */  long bound = 2 + NumBits(min(na, nb)) + MaxBits(a) + MaxBits(b);  /* Let r be minimal so that mr > bound */  long r = (bound >> l) + 1;  long mr = r << l;  /* p := 2^{mr}+1 */  ZZ p;  set(p);  LeftShift(p, p, mr);  add(p, p, 1);  /* Make coefficients of a and b positive */  vec_ZZ aa, bb;  aa.SetLength(m2);  bb.SetLength(m2);  long i;  for (i = 0; i <= deg(a); i++) {    if (sign(a.rep[i]) >= 0) {      aa[i] = a.rep[i];    } else {      add(aa[i], a.rep[i], p);    }  }  for (i = 0; i <= deg(b); i++) {    if (sign(b.rep[i]) >= 0) {      bb[i] = b.rep[i];    } else {      add(bb[i], b.rep[i], p);    }  }  /* 2m-point FFT's mod p */  fft(aa, r, l + 1, p, mr);  fft(bb, r, l + 1, p, mr);  /* Pointwise multiplication aa := aa * bb mod p */  ZZ tmp, ai;  for (i = 0; i < m2; i++) {    mul(ai, aa[i], bb[i]);    if (NumBits(ai) > mr) {      RightShift(tmp, ai, mr);      trunc(ai, ai, mr);      sub(ai, ai, tmp);      if (sign(ai) < 0) {	add(ai, ai, p);      }    }    aa[i] = ai;  }    ifft(aa, r, l + 1, p, mr);  /* Retrieve c, dividing by 2m, and subtracting p where necessary */  c.rep.SetLength(n + 1);  for (i = 0; i <= n; i++) {    ai = aa[i];    ZZ& ci = c.rep[i];    if (!IsZero(ai)) {      /* ci = -ai * 2^{mr-l-1} = ai * 2^{-l-1} = ai / 2m mod p */      LeftRotate(ai, ai, mr - l - 1, p, mr);      sub(tmp, p, ai);      if (NumBits(tmp) >= mr) { /* ci >= (p-1)/2 */	negate(ci, ai); /* ci = -ai = ci - p */      }      else        ci = tmp;    }     else       clear(ci);  }}// SSRatio computes how much bigger the SS moduls must be// to accomodate the necessary roots of unity.// This is useful in determining algorithm crossover points.double SSRatio(long na, long maxa, long nb, long maxb){  if (na <= 0 || nb <= 0) return 0;  long n = na + nb; /* degree of the product */  long l = NextPowerOfTwo(n + 1) - 1; /* 2^l <= n < 2^{l+1} */  long bound = 2 + NumBits(min(na, nb)) + maxa + maxb;  long r = (bound >> l) + 1;  long mr = r << l;  return double(mr + 1)/double(bound);}void HomMul(ZZX& x, const ZZX& a, const ZZX& b){   if (&a == &b) {      HomSqr(x, a);      return;   }   long da = deg(a);   long db = deg(b);   if (da < 0 || db < 0) {      clear(x);      return;   }   long bound = 2 + NumBits(min(da, db)+1) + MaxBits(a) + MaxBits(b);   ZZ prod;   set(prod);   long i, nprimes;   zz_pBak bak;   bak.save();   for (nprimes = 0; NumBits(prod) <= bound; nprimes++) {      if (nprimes >= NumFFTPrimes)         zz_p::FFTInit(nprimes);      mul(prod, prod, FFTPrime[nprimes]);   }   ZZ coeff;   ZZ t1;   long tt;   vec_ZZ c;   c.SetLength(da+db+1);   long j;   for (i = 0; i < nprimes; i++) {      zz_p::FFTInit(i);      long p = zz_p::modulus();      div(t1, prod, p);      tt = rem(t1, p);      tt = InvMod(tt, p);      mul(coeff, t1, tt);      zz_pX A, B, C;      conv(A, a);      conv(B, b);      mul(C, A, B);      long m = deg(C);      for (j = 0; j <= m; j++) {         /* c[j] += coeff*rep(C.rep[j]) */         mul(t1, coeff, rep(C.rep[j]));         add(c[j], c[j], t1);       }   }   x.rep.SetLength(da+db+1);   ZZ prod2;   RightShift(prod2, prod, 1);   for (j = 0; j <= da+db; j++) {      rem(t1, c[j], prod);      if (t1 > prod2)         sub(x.rep[j], t1, prod);      else         x.rep[j] = t1;   }   x.normalize();   bak.restore();}staticlong MaxSize(const ZZX& a){   long res = 0;   long n = a.rep.length();   long i;   for (i = 0; i < n; i++) {      long t = a.rep[i].size();      if (t > res)         res = t;   }   return res;}void mul(ZZX& c, const ZZX& a, const ZZX& b){   if (IsZero(a) || IsZero(b)) {      clear(c);      return;   }   if (&a == &b) {      sqr(c, a);      return;   }   long maxa = MaxSize(a);   long maxb = MaxSize(b);   long k = min(maxa, maxb);   long s = min(deg(a), deg(b)) + 1;   if (s == 1 || (k == 1 && s < 40) || (k == 2 && s < 20) ||                  (k == 3 && s < 10)) {      PlainMul(c, a, b);      return;   }   if (s < 80 || (k < 30 && s < 150))  {      KarMul(c, a, b);      return;   }   if (maxa + maxb >= 40 &&        SSRatio(deg(a), MaxBits(a), deg(b), MaxBits(b)) < 1.75)       SSMul(c, a, b);   else      HomMul(c, a, b);}void SSSqr(ZZX& c, const ZZX& a){  long na = deg(a);  if (na <= 0) {    PlainSqr(c, a);    return;  }  long n = na + na; /* degree of the product */  long l = NextPowerOfTwo(n + 1) - 1; /* 2^l <= n < 2^{l+1} */  long m2 = 1L << (l + 1); /* m2 = 2m = 2^{l+1} */  long bound = 2 + NumBits(na) + 2*MaxBits(a);  long r = (bound >> l) + 1;  long mr = r << l;  /* p := 2^{mr}+1 */  ZZ p;  set(p);  LeftShift(p, p, mr);  add(p, p, 1);  vec_ZZ aa;  aa.SetLength(m2);  long i;  for (i = 0; i <= deg(a); i++) {    if (sign(a.rep[i]) >= 0) {      aa[i] = a.rep[i];    } else {      add(aa[i], a.rep[i], p);    }  }  /* 2m-point FFT's mod p */  fft(aa, r, l + 1, p, mr);  /* Pointwise multiplication aa := aa * aa mod p */  ZZ tmp, ai;  for (i = 0; i < m2; i++) {    sqr(ai, aa[i]);    if (NumBits(ai) > mr) {      RightShift(tmp, ai, mr);      trunc(ai, ai, mr);      sub(ai, ai, tmp);      if (sign(ai) < 0) {	add(ai, ai, p);      }    }    aa[i] = ai;  }    ifft(aa, r, l + 1, p, mr);  ZZ ci;  /* Retrieve c, dividing by 2m, and subtracting p where necessary */  c.rep.SetLength(n + 1);  for (i = 0; i <= n; i++) {    ai = aa[i];    ZZ& ci = c.rep[i];    if (!IsZero(ai)) {      /* ci = -ai * 2^{mr-l-1} = ai * 2^{-l-1} = ai / 2m mod p */      LeftRotate(ai, ai, mr - l - 1, p, mr);      sub(tmp, p, ai);      if (NumBits(tmp) >= mr) { /* ci >= (p-1)/2 */	negate(ci, ai); /* ci = -ai = ci - p */      }      else        ci = tmp;    }     else       clear(ci);  }}void HomSqr(ZZX& x, const ZZX& a){   long da = deg(a);   if (da < 0) {      clear(x);      return;   }   long bound = 2 + NumBits(da+1) + 2*MaxBits(a);   ZZ prod;   set(prod);   long i, nprimes;   zz_pBak bak;   bak.save();   for (nprimes = 0; NumBits(prod) <= bound; nprimes++) {      if (nprimes >= NumFFTPrimes)         zz_p::FFTInit(nprimes);      mul(prod, prod, FFTPrime[nprimes]);   }   ZZ coeff;   ZZ t1;   long tt;   vec_ZZ c;   c.SetLength(da+da+1);   long j;   for (i = 0; i < nprimes; i++) {      zz_p::FFTInit(i);      long p = zz_p::modulus();      div(t1, prod, p);      tt = rem(t1, p);      tt = InvMod(tt, p);      mul(coeff, t1, tt);      zz_pX A, C;      conv(A, a);      sqr(C, A);      long m = deg(C);      for (j = 0; j <= m; j++) {         /* c[j] += coeff*rep(C.rep[j]) */         mul(t1, coeff, rep(C.rep[j]));         add(c[j], c[j], t1);       }   }   x.rep.SetLength(da+da+1);   ZZ prod2;   RightShift(prod2, prod, 1);   for (j = 0; j <= da+da; j++) {      rem(t1, c[j], prod);      if (t1 > prod2)         sub(x.rep[j], t1, prod);      else         x.rep[j] = t1;   }   x.normalize();   bak.restore();}void sqr(ZZX& c, const ZZX& a){   if (IsZero(a)) {      clear(c);      return;   }   long maxa = MaxSize(a);   long k = maxa;   long s = deg(a) + 1;   if (s == 1 || (k == 1 && s < 50) || (k == 2 && s < 25) ||                  (k == 3 && s < 25) || (k == 4 && s < 10)) {      PlainSqr(c, a);      return;   }   if (s < 80 || (k < 30 && s < 150))  {      KarSqr(c, a);      return;   }   long mba = MaxBits(a);      if (2*maxa >= 40 &&        SSRatio(deg(a), mba, deg(a), mba) < 1.75)       SSSqr(c, a);   else      HomSqr(c, a);}void mul(ZZX& x, const ZZX& a, const ZZ& b){   ZZ t;   long i, da;   const ZZ *ap;   ZZ* xp;   if (IsZero(b)) {      clear(x);      return;   }   t = b;   da = deg(a);   x.rep.SetLength(da+1);   ap = a.rep.elts();   xp = x.rep.elts();   for (i = 0; i <= da; i++)       mul(xp[i], ap[i], t);}void mul(ZZX& x, const ZZX& a, long b){   long i, da;   const ZZ *ap;   ZZ* xp;   if (b == 0) {      clear(x);      return;   }   da = deg(a);   x.rep.SetLength(da+1);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -