⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mat_gf2e.c

📁 密码大家Shoup写的数论算法c语言实现
💻 C
字号:
#include <NTL/mat_GF2E.h>#include <NTL/vec_GF2XVec.h>#include <NTL/vec_long.h>#include <NTL/new.h>NTL_START_IMPLNTL_matrix_impl(GF2E,vec_GF2E,vec_vec_GF2E,mat_GF2E)NTL_io_matrix_impl(GF2E,vec_GF2E,vec_vec_GF2E,mat_GF2E)NTL_eq_matrix_impl(GF2E,vec_GF2E,vec_vec_GF2E,mat_GF2E)  void add(mat_GF2E& X, const mat_GF2E& A, const mat_GF2E& B)  {     long n = A.NumRows();     long m = A.NumCols();       if (B.NumRows() != n || B.NumCols() != m)         Error("matrix add: dimension mismatch");       X.SetDims(n, m);       long i, j;     for (i = 1; i <= n; i++)         for (j = 1; j <= m; j++)           add(X(i,j), A(i,j), B(i,j));  }    void mul_aux(mat_GF2E& X, const mat_GF2E& A, const mat_GF2E& B)  {     long n = A.NumRows();     long l = A.NumCols();     long m = B.NumCols();       if (l != B.NumRows())        Error("matrix mul: dimension mismatch");       X.SetDims(n, m);       long i, j, k;     GF2X acc, tmp;       for (i = 1; i <= n; i++) {        for (j = 1; j <= m; j++) {           clear(acc);           for(k = 1; k <= l; k++) {              mul(tmp, rep(A(i,k)), rep(B(k,j)));              add(acc, acc, tmp);           }           conv(X(i,j), acc);        }     }  }      void mul(mat_GF2E& X, const mat_GF2E& A, const mat_GF2E& B)  {     if (&X == &A || &X == &B) {        mat_GF2E tmp;        mul_aux(tmp, A, B);        X = tmp;     }     else        mul_aux(X, A, B);  }      staticvoid mul_aux(vec_GF2E& x, const mat_GF2E& A, const vec_GF2E& b)  {     long n = A.NumRows();     long l = A.NumCols();       if (l != b.length())        Error("matrix mul: dimension mismatch");       x.SetLength(n);       long i, k;     GF2X acc, tmp;       for (i = 1; i <= n; i++) {        clear(acc);        for (k = 1; k <= l; k++) {           mul(tmp, rep(A(i,k)), rep(b(k)));           add(acc, acc, tmp);        }        conv(x(i), acc);     }  }      void mul(vec_GF2E& x, const mat_GF2E& A, const vec_GF2E& b)  {     if (&b == &x || A.position(b) != -1) {      vec_GF2E tmp;      mul_aux(tmp, A, b);      x = tmp;   }   else      mul_aux(x, A, b);}  staticvoid mul_aux(vec_GF2E& x, const vec_GF2E& a, const mat_GF2E& B)  {     long n = B.NumRows();     long l = B.NumCols();       if (n != a.length())        Error("matrix mul: dimension mismatch");       x.SetLength(l);       long i, k;     GF2X acc, tmp;       for (i = 1; i <= l; i++) {        clear(acc);        for (k = 1; k <= n; k++) {           mul(tmp, rep(a(k)), rep(B(k,i)));         add(acc, acc, tmp);        }        conv(x(i), acc);     }  }  void mul(vec_GF2E& x, const vec_GF2E& a, const mat_GF2E& B){   if (&a == &x || B.position(a) != -1) {      vec_GF2E tmp;      mul_aux(tmp, a, B);      x = tmp;   }   else      mul_aux(x, a, B);}       void ident(mat_GF2E& X, long n)  {     X.SetDims(n, n);     long i, j;       for (i = 1; i <= n; i++)        for (j = 1; j <= n; j++)           if (i == j)              set(X(i, j));           else              clear(X(i, j));  } void determinant(GF2E& d, const mat_GF2E& M_in){   long k, n;   long i, j;   long pos;   GF2X t1, t2;   GF2X *x, *y;   const GF2XModulus& p = GF2E::modulus();   n = M_in.NumRows();   if (M_in.NumCols() != n)      Error("determinant: nonsquare matrix");   if (n == 0) {      set(d);      return;   }   vec_GF2XVec M;   M.SetLength(n);   for (i = 0; i < n; i++) {      M[i].SetSize(n, 2*GF2E::WordLength());      for (j = 0; j < n; j++)         M[i][j] = rep(M_in[i][j]);   }   GF2X det;   set(det);   for (k = 0; k < n; k++) {      pos = -1;      for (i = k; i < n; i++) {         rem(t1, M[i][k], p);         M[i][k] = t1;         if (pos == -1 && !IsZero(t1))            pos = i;      }      if (pos != -1) {         if (k != pos) {            swap(M[pos], M[k]);         }         MulMod(det, det, M[k][k], p);         // make M[k, k] == -1 mod p, and make row k reduced         InvMod(t1, M[k][k], p);         for (j = k+1; j < n; j++) {            rem(t2, M[k][j], p);            MulMod(M[k][j], t2, t1, p);         }         for (i = k+1; i < n; i++) {            // M[i] = M[i] + M[k]*M[i,k]            t1 = M[i][k];   // this is already reduced            x = M[i].elts() + (k+1);            y = M[k].elts() + (k+1);            for (j = k+1; j < n; j++, x++, y++) {               // *x = *x + (*y)*t1               mul(t2, *y, t1);               add(*x, *x, t2);            }         }      }      else {         clear(d);         return;      }   }   conv(d, det);}long IsIdent(const mat_GF2E& A, long n){   if (A.NumRows() != n || A.NumCols() != n)      return 0;   long i, j;   for (i = 1; i <= n; i++)      for (j = 1; j <= n; j++)         if (i != j) {            if (!IsZero(A(i, j))) return 0;         }         else {            if (!IsOne(A(i, j))) return 0;         }   return 1;}            void transpose(mat_GF2E& X, const mat_GF2E& A){   long n = A.NumRows();   long m = A.NumCols();   long i, j;   if (&X == & A) {      if (n == m)         for (i = 1; i <= n; i++)            for (j = i+1; j <= n; j++)               swap(X(i, j), X(j, i));      else {         mat_GF2E tmp;         tmp.SetDims(m, n);         for (i = 1; i <= n; i++)            for (j = 1; j <= m; j++)               tmp(j, i) = A(i, j);         X.kill();         X = tmp;      }   }   else {      X.SetDims(m, n);      for (i = 1; i <= n; i++)         for (j = 1; j <= m; j++)            X(j, i) = A(i, j);   }}   void solve(GF2E& d, vec_GF2E& X,            const mat_GF2E& A, const vec_GF2E& b){   long n = A.NumRows();   if (A.NumCols() != n)      Error("solve: nonsquare matrix");   if (b.length() != n)      Error("solve: dimension mismatch");   if (n == 0) {      set(d);      X.SetLength(0);      return;   }   long i, j, k, pos;   GF2X t1, t2;   GF2X *x, *y;   const GF2XModulus& p = GF2E::modulus();   vec_GF2XVec M;   M.SetLength(n);   for (i = 0; i < n; i++) {      M[i].SetSize(n+1, 2*GF2E::WordLength());      for (j = 0; j < n; j++)          M[i][j] = rep(A[j][i]);      M[i][n] = rep(b[i]);   }   GF2X det;   set(det);   for (k = 0; k < n; k++) {      pos = -1;      for (i = k; i < n; i++) {         rem(t1, M[i][k], p);         M[i][k] = t1;         if (pos == -1 && !IsZero(t1)) {            pos = i;         }      }      if (pos != -1) {         if (k != pos) {            swap(M[pos], M[k]);         }         MulMod(det, det, M[k][k], p);         // make M[k, k] == -1 mod p, and make row k reduced         InvMod(t1, M[k][k], p);         for (j = k+1; j <= n; j++) {            rem(t2, M[k][j], p);            MulMod(M[k][j], t2, t1, p);         }         for (i = k+1; i < n; i++) {            // M[i] = M[i] + M[k]*M[i,k]            t1 = M[i][k];   // this is already reduced            x = M[i].elts() + (k+1);            y = M[k].elts() + (k+1);            for (j = k+1; j <= n; j++, x++, y++) {               // *x = *x + (*y)*t1               mul(t2, *y, t1);               add(*x, *x, t2);            }         }      }      else {         clear(d);         return;      }   }   X.SetLength(n);   for (i = n-1; i >= 0; i--) {      clear(t1);      for (j = i+1; j < n; j++) {         mul(t2, rep(X[j]), M[i][j]);         add(t1, t1, t2);      }      add(t1, t1, M[i][n]);      conv(X[i], t1);   }   conv(d, det);}void inv(GF2E& d, mat_GF2E& X, const mat_GF2E& A){   long n = A.NumRows();   if (A.NumCols() != n)      Error("inv: nonsquare matrix");   if (n == 0) {      set(d);      X.SetDims(0, 0);      return;   }   long i, j, k, pos;   GF2X t1, t2;   GF2X *x, *y;   const GF2XModulus& p = GF2E::modulus();   vec_GF2XVec M;   M.SetLength(n);   for (i = 0; i < n; i++) {      M[i].SetSize(2*n, 2*GF2E::WordLength());      for (j = 0; j < n; j++) {         M[i][j] = rep(A[i][j]);         clear(M[i][n+j]);      }      set(M[i][n+i]);   }   GF2X det;   set(det);   for (k = 0; k < n; k++) {      pos = -1;      for (i = k; i < n; i++) {         rem(t1, M[i][k], p);         M[i][k] = t1;         if (pos == -1 && !IsZero(t1)) {            pos = i;         }      }      if (pos != -1) {         if (k != pos) {            swap(M[pos], M[k]);         }         MulMod(det, det, M[k][k], p);         // make M[k, k] == -1 mod p, and make row k reduced         InvMod(t1, M[k][k], p);         for (j = k+1; j < 2*n; j++) {            rem(t2, M[k][j], p);            MulMod(M[k][j], t2, t1, p);         }         for (i = k+1; i < n; i++) {            // M[i] = M[i] + M[k]*M[i,k]            t1 = M[i][k];   // this is already reduced            x = M[i].elts() + (k+1);            y = M[k].elts() + (k+1);            for (j = k+1; j < 2*n; j++, x++, y++) {               // *x = *x + (*y)*t1               mul(t2, *y, t1);               add(*x, *x, t2);            }         }      }      else {         clear(d);         return;      }   }   X.SetDims(n, n);   for (k = 0; k < n; k++) {      for (i = n-1; i >= 0; i--) {         clear(t1);         for (j = i+1; j < n; j++) {            mul(t2, rep(X[j][k]), M[i][j]);            add(t1, t1, t2);         }         add(t1, t1, M[i][n+k]);         conv(X[i][k], t1);      }   }   conv(d, det);}long gauss(mat_GF2E& M_in, long w){   long k, l;   long i, j;   long pos;   GF2X t1, t2, t3;   GF2X *x, *y;   long n = M_in.NumRows();   long m = M_in.NumCols();   if (w < 0 || w > m)      Error("gauss: bad args");   const GF2XModulus& p = GF2E::modulus();   vec_GF2XVec M;   M.SetLength(n);   for (i = 0; i < n; i++) {      M[i].SetSize(m, 2*GF2E::WordLength());      for (j = 0; j < m; j++) {         M[i][j] = rep(M_in[i][j]);      }   }   l = 0;   for (k = 0; k < w && l < n; k++) {      pos = -1;      for (i = l; i < n; i++) {         rem(t1, M[i][k], p);         M[i][k] = t1;         if (pos == -1 && !IsZero(t1)) {            pos = i;         }      }      if (pos != -1) {         swap(M[pos], M[l]);         InvMod(t3, M[l][k], p);         for (j = k+1; j < m; j++) {            rem(M[l][j], M[l][j], p);         }         for (i = l+1; i < n; i++) {            // M[i] = M[i] + M[l]*M[i,k]*t3            MulMod(t1, M[i][k], t3, p);            clear(M[i][k]);            x = M[i].elts() + (k+1);            y = M[l].elts() + (k+1);            for (j = k+1; j < m; j++, x++, y++) {               // *x = *x + (*y)*t1               mul(t2, *y, t1);               add(t2, t2, *x);               *x = t2;            }         }         l++;      }   }      for (i = 0; i < n; i++)      for (j = 0; j < m; j++)         conv(M_in[i][j], M[i][j]);   return l;}long gauss(mat_GF2E& M){   return gauss(M, M.NumCols());}void image(mat_GF2E& X, const mat_GF2E& A){   mat_GF2E M;   M = A;   long r = gauss(M);   M.SetDims(r, M.NumCols());   X = M;}void kernel(mat_GF2E& X, const mat_GF2E& A){   long m = A.NumRows();   long n = A.NumCols();   mat_GF2E M;   long r;   transpose(M, A);   r = gauss(M);   X.SetDims(m-r, m);   long i, j, k, s;   GF2X t1, t2;   GF2E T3;   vec_long D;   D.SetLength(m);   for (j = 0; j < m; j++) D[j] = -1;   vec_GF2E inverses;   inverses.SetLength(m);   j = -1;   for (i = 0; i < r; i++) {      do {         j++;      } while (IsZero(M[i][j]));      D[j] = i;      inv(inverses[j], M[i][j]);    }   for (k = 0; k < m-r; k++) {      vec_GF2E& v = X[k];      long pos = 0;      for (j = m-1; j >= 0; j--) {         if (D[j] == -1) {            if (pos == k)               set(v[j]);            else               clear(v[j]);            pos++;         }         else {            i = D[j];            clear(t1);            for (s = j+1; s < m; s++) {               mul(t2, rep(v[s]), rep(M[i][s]));               add(t1, t1, t2);            }            conv(T3, t1);            mul(T3, T3, inverses[j]);            v[j] = T3;         }      }   }}   void mul(mat_GF2E& X, const mat_GF2E& A, const GF2E& b_in){   GF2E b = b_in;   long n = A.NumRows();   long m = A.NumCols();   X.SetDims(n, m);   long i, j;   for (i = 0; i < n; i++)      for (j = 0; j < m; j++)         mul(X[i][j], A[i][j], b);}void mul(mat_GF2E& X, const mat_GF2E& A, GF2 b){   X = A;   if (b == 0)      clear(X);}void diag(mat_GF2E& X, long n, const GF2E& d_in)  {     GF2E d = d_in;   X.SetDims(n, n);     long i, j;       for (i = 1; i <= n; i++)        for (j = 1; j <= n; j++)           if (i == j)              X(i, j) = d;           else              clear(X(i, j));  } long IsDiag(const mat_GF2E& A, long n, const GF2E& d){   if (A.NumRows() != n || A.NumCols() != n)      return 0;   long i, j;   for (i = 1; i <= n; i++)      for (j = 1; j <= n; j++)         if (i != j) {            if (!IsZero(A(i, j))) return 0;         }         else {            if (A(i, j) != d) return 0;         }   return 1;}long IsZero(const mat_GF2E& a){   long n = a.NumRows();   long i;   for (i = 0; i < n; i++)      if (!IsZero(a[i]))         return 0;   return 1;}void clear(mat_GF2E& x){   long n = x.NumRows();   long i;   for (i = 0; i < n; i++)      clear(x[i]);}mat_GF2E operator+(const mat_GF2E& a, const mat_GF2E& b){   mat_GF2E res;   add(res, a, b);   NTL_OPT_RETURN(mat_GF2E, res);}mat_GF2E operator*(const mat_GF2E& a, const mat_GF2E& b){   mat_GF2E res;   mul_aux(res, a, b);   NTL_OPT_RETURN(mat_GF2E, res);}mat_GF2E operator-(const mat_GF2E& a, const mat_GF2E& b){   mat_GF2E res;   sub(res, a, b);   NTL_OPT_RETURN(mat_GF2E, res);}mat_GF2E operator-(const mat_GF2E& a){   mat_GF2E res;   negate(res, a);   NTL_OPT_RETURN(mat_GF2E, res);}vec_GF2E operator*(const mat_GF2E& a, const vec_GF2E& b){   vec_GF2E res;   mul_aux(res, a, b);   NTL_OPT_RETURN(vec_GF2E, res);}vec_GF2E operator*(const vec_GF2E& a, const mat_GF2E& b){   vec_GF2E res;   mul_aux(res, a, b);   NTL_OPT_RETURN(vec_GF2E, res);}void inv(mat_GF2E& X, const mat_GF2E& A){   GF2E d;   inv(d, X, A);   if (d == 0) Error("inv: non-invertible matrix");}void power(mat_GF2E& X, const mat_GF2E& A, const ZZ& e){   if (A.NumRows() != A.NumCols()) Error("power: non-square matrix");   if (e == 0) {      ident(X, A.NumRows());      return;   }   mat_GF2E T1, T2;   long i, k;   k = NumBits(e);   T1 = A;   for (i = k-2; i >= 0; i--) {      sqr(T2, T1);      if (bit(e, i))         mul(T1, T2, A);      else         T1 = T2;   }   if (e < 0)      inv(X, T1);   else      X = T1;}NTL_END_IMPL

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -