📄 mat_lzz_pe.c
字号:
#include <NTL/mat_lzz_pE.h>#include <NTL/new.h>NTL_START_IMPLNTL_matrix_impl(zz_pE,vec_zz_pE,vec_vec_zz_pE,mat_zz_pE)NTL_io_matrix_impl(zz_pE,vec_zz_pE,vec_vec_zz_pE,mat_zz_pE)NTL_eq_matrix_impl(zz_pE,vec_zz_pE,vec_vec_zz_pE,mat_zz_pE) void add(mat_zz_pE& X, const mat_zz_pE& A, const mat_zz_pE& B) { long n = A.NumRows(); long m = A.NumCols(); if (B.NumRows() != n || B.NumCols() != m) Error("matrix add: dimension mismatch"); X.SetDims(n, m); long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= m; j++) add(X(i,j), A(i,j), B(i,j)); } void sub(mat_zz_pE& X, const mat_zz_pE& A, const mat_zz_pE& B) { long n = A.NumRows(); long m = A.NumCols(); if (B.NumRows() != n || B.NumCols() != m) Error("matrix sub: dimension mismatch"); X.SetDims(n, m); long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= m; j++) sub(X(i,j), A(i,j), B(i,j)); } void negate(mat_zz_pE& X, const mat_zz_pE& A) { long n = A.NumRows(); long m = A.NumCols(); X.SetDims(n, m); long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= m; j++) negate(X(i,j), A(i,j)); } void mul_aux(mat_zz_pE& X, const mat_zz_pE& A, const mat_zz_pE& B) { long n = A.NumRows(); long l = A.NumCols(); long m = B.NumCols(); if (l != B.NumRows()) Error("matrix mul: dimension mismatch"); X.SetDims(n, m); long i, j, k; zz_pX acc, tmp; for (i = 1; i <= n; i++) { for (j = 1; j <= m; j++) { clear(acc); for(k = 1; k <= l; k++) { mul(tmp, rep(A(i,k)), rep(B(k,j))); add(acc, acc, tmp); } conv(X(i,j), acc); } } } void mul(mat_zz_pE& X, const mat_zz_pE& A, const mat_zz_pE& B) { if (&X == &A || &X == &B) { mat_zz_pE tmp; mul_aux(tmp, A, B); X = tmp; } else mul_aux(X, A, B); } staticvoid mul_aux(vec_zz_pE& x, const mat_zz_pE& A, const vec_zz_pE& b) { long n = A.NumRows(); long l = A.NumCols(); if (l != b.length()) Error("matrix mul: dimension mismatch"); x.SetLength(n); long i, k; zz_pX acc, tmp; for (i = 1; i <= n; i++) { clear(acc); for (k = 1; k <= l; k++) { mul(tmp, rep(A(i,k)), rep(b(k))); add(acc, acc, tmp); } conv(x(i), acc); } } void mul(vec_zz_pE& x, const mat_zz_pE& A, const vec_zz_pE& b) { if (&b == &x || A.position(b) != -1) { vec_zz_pE tmp; mul_aux(tmp, A, b); x = tmp; } else mul_aux(x, A, b);} staticvoid mul_aux(vec_zz_pE& x, const vec_zz_pE& a, const mat_zz_pE& B) { long n = B.NumRows(); long l = B.NumCols(); if (n != a.length()) Error("matrix mul: dimension mismatch"); x.SetLength(l); long i, k; zz_pX acc, tmp; for (i = 1; i <= l; i++) { clear(acc); for (k = 1; k <= n; k++) { mul(tmp, rep(a(k)), rep(B(k,i))); add(acc, acc, tmp); } conv(x(i), acc); } } void mul(vec_zz_pE& x, const vec_zz_pE& a, const mat_zz_pE& B){ if (&a == &x || B.position(a) != -1) { vec_zz_pE tmp; mul_aux(tmp, a, B); x = tmp; } else mul_aux(x, a, B);} void ident(mat_zz_pE& X, long n) { X.SetDims(n, n); long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) if (i == j) set(X(i, j)); else clear(X(i, j)); } void determinant(zz_pE& d, const mat_zz_pE& M_in){ long k, n; long i, j; long pos; zz_pX t1, t2; zz_pX *x, *y; const zz_pXModulus& p = zz_pE::modulus(); n = M_in.NumRows(); if (M_in.NumCols() != n) Error("determinant: nonsquare matrix"); if (n == 0) { set(d); return; } vec_zz_pX *M = NTL_NEW_OP vec_zz_pX[n]; for (i = 0; i < n; i++) { M[i].SetLength(n); for (j = 0; j < n; j++) { M[i][j].rep.SetMaxLength(2*deg(p)-1); M[i][j] = rep(M_in[i][j]); } } zz_pX det; set(det); for (k = 0; k < n; k++) { pos = -1; for (i = k; i < n; i++) { rem(t1, M[i][k], p); M[i][k] = t1; if (pos == -1 && !IsZero(t1)) pos = i; } if (pos != -1) { if (k != pos) { swap(M[pos], M[k]); negate(det, det); } MulMod(det, det, M[k][k], p); // make M[k, k] == -1 mod p, and make row k reduced InvMod(t1, M[k][k], p); negate(t1, t1); for (j = k+1; j < n; j++) { rem(t2, M[k][j], p); MulMod(M[k][j], t2, t1, p); } for (i = k+1; i < n; i++) { // M[i] = M[i] + M[k]*M[i,k] t1 = M[i][k]; // this is already reduced x = M[i].elts() + (k+1); y = M[k].elts() + (k+1); for (j = k+1; j < n; j++, x++, y++) { // *x = *x + (*y)*t1 mul(t2, *y, t1); add(*x, *x, t2); } } } else { clear(d); goto done; } } conv(d, det);done: delete[] M;}long IsIdent(const mat_zz_pE& A, long n){ if (A.NumRows() != n || A.NumCols() != n) return 0; long i, j; for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) if (i != j) { if (!IsZero(A(i, j))) return 0; } else { if (!IsOne(A(i, j))) return 0; } return 1;} void transpose(mat_zz_pE& X, const mat_zz_pE& A){ long n = A.NumRows(); long m = A.NumCols(); long i, j; if (&X == & A) { if (n == m) for (i = 1; i <= n; i++) for (j = i+1; j <= n; j++) swap(X(i, j), X(j, i)); else { mat_zz_pE tmp; tmp.SetDims(m, n); for (i = 1; i <= n; i++) for (j = 1; j <= m; j++) tmp(j, i) = A(i, j); X.kill(); X = tmp; } } else { X.SetDims(m, n); for (i = 1; i <= n; i++) for (j = 1; j <= m; j++) X(j, i) = A(i, j); }} void solve(zz_pE& d, vec_zz_pE& X, const mat_zz_pE& A, const vec_zz_pE& b){ long n = A.NumRows(); if (A.NumCols() != n) Error("solve: nonsquare matrix"); if (b.length() != n) Error("solve: dimension mismatch"); if (n == 0) { set(d); X.SetLength(0); return; } long i, j, k, pos; zz_pX t1, t2; zz_pX *x, *y; const zz_pXModulus& p = zz_pE::modulus(); vec_zz_pX *M = NTL_NEW_OP vec_zz_pX[n]; for (i = 0; i < n; i++) { M[i].SetLength(n+1); for (j = 0; j < n; j++) { M[i][j].rep.SetMaxLength(2*deg(p)-1); M[i][j] = rep(A[j][i]); } M[i][n].rep.SetMaxLength(2*deg(p)-1); M[i][n] = rep(b[i]); } zz_pX det; set(det); for (k = 0; k < n; k++) { pos = -1; for (i = k; i < n; i++) { rem(t1, M[i][k], p); M[i][k] = t1; if (pos == -1 && !IsZero(t1)) { pos = i; } } if (pos != -1) { if (k != pos) { swap(M[pos], M[k]); negate(det, det); } MulMod(det, det, M[k][k], p); // make M[k, k] == -1 mod p, and make row k reduced InvMod(t1, M[k][k], p); negate(t1, t1); for (j = k+1; j <= n; j++) { rem(t2, M[k][j], p); MulMod(M[k][j], t2, t1, p); } for (i = k+1; i < n; i++) { // M[i] = M[i] + M[k]*M[i,k] t1 = M[i][k]; // this is already reduced x = M[i].elts() + (k+1); y = M[k].elts() + (k+1); for (j = k+1; j <= n; j++, x++, y++) { // *x = *x + (*y)*t1 mul(t2, *y, t1); add(*x, *x, t2); } } } else { clear(d); goto done; } } X.SetLength(n); for (i = n-1; i >= 0; i--) { clear(t1); for (j = i+1; j < n; j++) { mul(t2, rep(X[j]), M[i][j]); add(t1, t1, t2); } sub(t1, t1, M[i][n]); conv(X[i], t1); } conv(d, det);done: delete[] M;}void inv(zz_pE& d, mat_zz_pE& X, const mat_zz_pE& A){ long n = A.NumRows(); if (A.NumCols() != n) Error("inv: nonsquare matrix"); if (n == 0) { set(d);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -