⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zzx.h

📁 密码大家Shoup写的数论算法c语言实现
💻 H
📖 第 1 页 / 共 2 页
字号:
inline ZZX operator-(const ZZX& a, const ZZ& b)   { ZZX x; sub(x, a, b); NTL_OPT_RETURN(ZZX, x); }inline ZZX operator-(const ZZX& a, long b)   { ZZX x; sub(x, a, b); NTL_OPT_RETURN(ZZX, x); }inline ZZX operator-(const ZZ& a, const ZZX& b)   { ZZX x; sub(x, a, b); NTL_OPT_RETURN(ZZX, x); }inline ZZX operator-(long a, const ZZX& b)   { ZZX x; sub(x, a, b); NTL_OPT_RETURN(ZZX, x); }inline ZZX& operator+=(ZZX& x, const ZZX& b)   { add(x, x, b); return x; }inline ZZX& operator+=(ZZX& x, const ZZ& b)   { add(x, x, b); return x; }inline ZZX& operator+=(ZZX& x, long b)   { add(x, x, b); return x; }inline ZZX& operator-=(ZZX& x, const ZZX& b)   { sub(x, x, b); return x; }inline ZZX& operator-=(ZZX& x, const ZZ& b)   { sub(x, x, b); return x; }inline ZZX& operator-=(ZZX& x, long b)   { sub(x, x, b); return x; }inline ZZX operator-(const ZZX& a)    { ZZX x; negate(x, a); NTL_OPT_RETURN(ZZX, x); }inline ZZX& operator++(ZZX& x) { add(x, x, 1); return x; }inline void operator++(ZZX& x, int) { add(x, x, 1); }inline ZZX& operator--(ZZX& x) { sub(x, x, 1); return x; }inline void operator--(ZZX& x, int) { sub(x, x, 1); }/*****************************************************************                        Multiplication******************************************************************/void mul(ZZX& x, const ZZX& a, const ZZX& b);// x = a * bvoid sqr(ZZX& x, const ZZX& a);inline ZZX sqr(const ZZX& a)   { ZZX x; sqr(x, a); NTL_OPT_RETURN(ZZX, x); }// x = a^2void PlainMul(ZZX& x, const ZZX& a, const ZZX& b);void PlainSqr(ZZX& x, const ZZX& a);void KarMul(ZZX& x, const ZZX& a, const ZZX& b);void KarSqr(ZZX& x, const ZZX& a);void HomMul(ZZX& x, const ZZX& a, const ZZX& b);void HomSqr(ZZX& x, const ZZX& a);void SSMul(ZZX& x, const ZZX& a, const ZZX& b);void SSSqr(ZZX& x, const ZZX& a);double SSRatio(long na, long maxa, long nb, long maxb);void mul(ZZX & x, const ZZX& a, const ZZ& b);void mul(ZZX& x, const ZZX& a, long b);inline void mul(ZZX& x, const ZZ& a, const ZZX& b) { mul(x, b, a); } inline void mul(ZZX& x, long a, const ZZX& b) { mul(x, b, a); } inline ZZX operator*(const ZZX& a, const ZZX& b)   { ZZX x; mul(x, a, b); NTL_OPT_RETURN(ZZX, x); }inline ZZX operator*(const ZZX& a, const ZZ& b)   { ZZX x; mul(x, a, b); NTL_OPT_RETURN(ZZX, x); }inline ZZX operator*(const ZZX& a, long b)   { ZZX x; mul(x, a, b); NTL_OPT_RETURN(ZZX, x); }inline ZZX operator*(const ZZ& a, const ZZX& b)   { ZZX x; mul(x, a, b); NTL_OPT_RETURN(ZZX, x); }inline ZZX operator*(long a, const ZZX& b)   { ZZX x; mul(x, a, b); NTL_OPT_RETURN(ZZX, x); }inline ZZX& operator*=(ZZX& x, const ZZX& b)   { mul(x, x, b); return x; }inline ZZX& operator*=(ZZX& x, const ZZ& b)   { mul(x, x, b); return x; }inline ZZX& operator*=(ZZX& x, long b)   { mul(x, x, b); return x; }/*************************************************************                      Division**************************************************************/// "plain" versionsvoid PlainPseudoDivRem(ZZX& q, ZZX& r, const ZZX& a, const ZZX& b);void PlainPseudoDiv(ZZX& q, const ZZX& a, const ZZX& b);void PlainPseudoRem(ZZX& r, const ZZX& a, const ZZX& b);// "homomorphic imaging" versionsvoid HomPseudoDivRem(ZZX& q, ZZX& r, const ZZX& a, const ZZX& b);void HomPseudoDiv(ZZX& q, const ZZX& a, const ZZX& b);void HomPseudoRem(ZZX& r, const ZZX& a, const ZZX& b);inline void PseudoDivRem(ZZX& q, ZZX& r, const ZZX& a, const ZZX& b)// performs pseudo-division:  computes q and r// with deg(r) < deg(b), and LeadCoeff(b)^(deg(a)-deg(b)+1) a = b q + r.// current implementation always defaults to "plain"   { PlainPseudoDivRem(q, r, a, b); }inline void PseudoDiv(ZZX& q, const ZZX& a, const ZZX& b)   { PlainPseudoDiv(q, a, b); }inline void PseudoRem(ZZX& r, const ZZX& a, const ZZX& b)   { PlainPseudoRem(r, a, b); }inline ZZX PseudoDiv(const ZZX& a, const ZZX& b)   { ZZX x; PseudoDiv(x, a, b); NTL_OPT_RETURN(ZZX, x); }inline ZZX PseudoRem(const ZZX& a, const ZZX& b)   { ZZX x; PseudoRem(x, a, b); NTL_OPT_RETURN(ZZX, x); }#ifndef NTL_TRANSITIONvoid DivRem(ZZX& q, ZZX& r, const ZZX& a, const ZZX& b);void div(ZZX& q, const ZZX& a, const ZZX& b);void div(ZZX& q, const ZZX& a, const ZZ& b);void div(ZZX& q, const ZZX& a, long b);void rem(ZZX& r, const ZZX& a, const ZZX& b);inline ZZX operator/(const ZZX& a, const ZZX& b)   { ZZX x; div(x, a, b); NTL_OPT_RETURN(ZZX, x); }inline ZZX operator/(const ZZX& a, const ZZ& b)   { ZZX x; div(x, a, b); NTL_OPT_RETURN(ZZX, x); }inline ZZX operator/(const ZZX& a, long b)   { ZZX x; div(x, a, b); NTL_OPT_RETURN(ZZX, x); }inline ZZX& operator/=(ZZX& x, const ZZ& b)   { div(x, x, b); return x; }inline ZZX& operator/=(ZZX& x, long b)   { div(x, x, b); return x; }inline ZZX& operator/=(ZZX& x, const ZZX& b)   { div(x, x, b); return x; }inline ZZX operator%(const ZZX& a, const ZZX& b)   { ZZX x; rem(x, a, b); NTL_OPT_RETURN(ZZX, x); }inline ZZX& operator%=(ZZX& x, const ZZX& b)   { rem(x, x, b); return x; }#endif// Modular arithemtic---f must be monic, and other args// must have degree less than that of fvoid MulMod(ZZX& x, const ZZX& a, const ZZX& b, const ZZX& f);inline ZZX MulMod(const ZZX& a, const ZZX& b, const ZZX& f)   { ZZX x; MulMod(x, a, b, f); NTL_OPT_RETURN(ZZX, x); }void SqrMod(ZZX& x, const ZZX& a, const ZZX& f);inline ZZX SqrMod(const ZZX& a, const ZZX& f)   { ZZX x; SqrMod(x, a, f); NTL_OPT_RETURN(ZZX, x); }void MulByXMod(ZZX& x, const ZZX& a, const ZZX& f);inline ZZX MulByXMod(const ZZX& a, const ZZX& f)   { ZZX x; MulByXMod(x, a, f); NTL_OPT_RETURN(ZZX, x); }// these always use "plain" divisionlong PlainDivide(ZZX& q, const ZZX& a, const ZZX& b);long PlainDivide(const ZZX& a, const ZZX& b);// these always use "homomorphic imaging"long HomDivide(ZZX& q, const ZZX& a, const ZZX& b);long HomDivide(const ZZX& a, const ZZX& b);long divide(ZZX& q, const ZZX& a, const ZZX& b);// if b | a, sets q = a/b and returns 1; otherwise returns 0long divide(const ZZX& a, const ZZX& b);long divide(ZZX& q, const ZZX& a, const ZZ& b);// if b | a, sets q = a/b and returns 1; otherwise returns 0long divide(const ZZX& a, const ZZ& b);// if b | a, returns 1; otherwise returns 0//single-precision versionslong divide(ZZX& q, const ZZX& a, long b);long divide(const ZZX& a, long b);void content(ZZ& d, const ZZX& f);// d = content of f, sign(d) == sign(LeadCoeff(f))inline ZZ content(const ZZX& f)   { ZZ x; content(x, f); NTL_OPT_RETURN(ZZ, x); }void PrimitivePart(ZZX& pp, const ZZX& f);// pp = primitive part of f, LeadCoeff(pp) >= 0inline ZZX PrimitivePart(const ZZX& f)   { ZZX x; PrimitivePart(x, f); NTL_OPT_RETURN(ZZX, x); }   void GCD(ZZX& d, const ZZX& a, const ZZX& b);// d = gcd(a, b), LeadCoeff(d) >= 0inline ZZX GCD(const ZZX& a, const ZZX& b)   { ZZX x; GCD(x, a, b); NTL_OPT_RETURN(ZZX, x); }long MaxBits(const ZZX& f);// returns max NumBits of coefficients of flong CharPolyBound(const ZZX& a, const ZZX& f);/***************************************************************                      traces, norms, resultants****************************************************************/void TraceVec(vec_ZZ& S, const ZZX& f);// S[i] = Trace(X^i mod f), for i = 0..deg(f)-1.// f must be a monic polynomial.inline vec_ZZ TraceVec(const ZZX& f)   { vec_ZZ x; TraceVec(x, f); NTL_OPT_RETURN(vec_ZZ, x); }void TraceMod(ZZ& res, const ZZX& a, const ZZX& f);inline ZZ TraceMod(const ZZX& a, const ZZX& f)   { ZZ x; TraceMod(x, a, f); NTL_OPT_RETURN(ZZ, x); }// res = trace of (a mod f)// f must be monicvoid resultant(ZZ& res, const ZZX& a, const ZZX& b, long deterministic=0);inline ZZ resultant(const ZZX& a, const ZZX& b, long deterministic=0)   { ZZ x; resultant(x, a, b, deterministic); NTL_OPT_RETURN(ZZ, x); }// res = resultant of a and b// if !deterministic, then it may use a randomized strategy//    that errs with probability no more than 2^{-80}.void NormMod(ZZ& res, const ZZX& a, const ZZX& f, long deterministic=0);inline ZZ NormMod(const ZZX& a, const ZZX& f, long deterministic=0)   { ZZ x; NormMod(x, a, f, deterministic); NTL_OPT_RETURN(ZZ, x); }// res = norm of (a mod f)// f must be monic// if !deterministic, then it may use a randomized strategy//    that errs with probability no more than 2^{-80}.void discriminant(ZZ& d, const ZZX& a, long deterministic=0);inline ZZ discriminant(const ZZX& a, long deterministic=0)   { ZZ x; discriminant(x, a, deterministic); NTL_OPT_RETURN(ZZ, x); }// d = discriminant of a//   = (-1)^{m(m-1)/2} resultant(a, a')/lc(a),//     where m = deg(a)// if !deterministic, then it may use a randomized strategy//    that errs with probability no more than 2^{-80}.void CharPolyMod(ZZX& g, const ZZX& a, const ZZX& f, long deterministic=0);inline ZZX CharPolyMod(const ZZX& a, const ZZX& f, long deterministic=0)   { ZZX x; CharPolyMod(x, a, f, deterministic); NTL_OPT_RETURN(ZZX, x); }// g = char poly of (a mod f)// f must be monic// if !deterministic, then it may use a randomized strategy//    that errs with probability no more than 2^{-80}.void MinPolyMod(ZZX& g, const ZZX& a, const ZZX& f);inline ZZX MinPolyMod(const ZZX& a, const ZZX& f)   { ZZX x; MinPolyMod(x, a, f); NTL_OPT_RETURN(ZZX, x); }// g = min poly of (a mod f)// f must be monic// may use a probabilistic strategy that errs with//   probability no more than 2^{-80}void XGCD(ZZ& r, ZZX& s, ZZX& t, const ZZX& a, const ZZX& b,           long deterministic=0);// r = resultant of a and b;// if r != 0, then computes s and t such that://   a*s + b*t = r;// otherwise s and t not affected.// if !deterministic, then resultant computation may use a randomized strategy//    that errs with probability no more than 2^{-80}./******************************************************      Incremental Chinese Remaindering*******************************************************/long CRT(ZZX& a, ZZ& prod, const zz_pX& A);long CRT(ZZX& a, ZZ& prod, const ZZ_pX& A);// If p is the current modulus with (p, prod) = 1;// Computes b such that b = a mod prod and b = A mod p,//    with coefficients in the interval (-p*prod/2, p*prod/2];// Sets a = b, prod = p*prod, and returns 1 if a's value changed.// vectorsNTL_vector_decl(ZZX,vec_ZZX)NTL_eq_vector_decl(ZZX,vec_ZZX)NTL_io_vector_decl(ZZX,vec_ZZX)NTL_CLOSE_NNS#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -