⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lzz_px.h

📁 密码大家Shoup写的数论算法c语言实现
💻 H
📖 第 1 页 / 共 3 页
字号:
// x = a % f, no restrictions on deg(a);  makes repeated calls to rem21inline zz_pX operator%(const zz_pX& a, const zz_pXModulus& F)   { zz_pX x; rem(x, a, F); NTL_OPT_RETURN(zz_pX, x); }inline zz_pX& operator%=(zz_pX& x, const zz_pXModulus& F)   { rem(x, x, F); return x; }void DivRem(zz_pX& q, zz_pX& r, const zz_pX& a, const zz_pXModulus& F);void div(zz_pX& q, const zz_pX& a, const zz_pXModulus& F);inline zz_pX operator/(const zz_pX& a, const zz_pXModulus& F)   { zz_pX x; div(x, a, F); NTL_OPT_RETURN(zz_pX, x); }inline zz_pX& operator/=(zz_pX& x, const zz_pXModulus& F)   { div(x, x, F); return x; }void MulMod(zz_pX& x, const zz_pX& a, const zz_pX& b, const zz_pXModulus& F);// x = (a * b) % f// deg(a), deg(b) < ninline zz_pX MulMod(const zz_pX& a, const zz_pX& b, const zz_pXModulus& F)   { zz_pX x; MulMod(x, a, b, F); NTL_OPT_RETURN(zz_pX, x); }void SqrMod(zz_pX& x, const zz_pX& a, const zz_pXModulus& F);// x = a^2 % f// deg(a) < ninline zz_pX SqrMod(const zz_pX& a, const zz_pXModulus& F)   { zz_pX x; SqrMod(x, a, F); NTL_OPT_RETURN(zz_pX, x); }void PowerMod(zz_pX& x, const zz_pX& a, const ZZ& e, const zz_pXModulus& F);// x = a^e % f, e >= 0inline zz_pX PowerMod(const zz_pX& a, const ZZ& e, const zz_pXModulus& F)   { zz_pX x; PowerMod(x, a, e, F); NTL_OPT_RETURN(zz_pX, x); }inline void PowerMod(zz_pX& x, const zz_pX& a, long e, const zz_pXModulus& F)   { PowerMod(x, a, ZZ_expo(e), F); }inline zz_pX PowerMod(const zz_pX& a, long e, const zz_pXModulus& F)   { zz_pX x; PowerMod(x, a, e, F); NTL_OPT_RETURN(zz_pX, x); }void PowerXMod(zz_pX& x, const ZZ& e, const zz_pXModulus& F);// x = X^e % f, e >= 0inline zz_pX PowerXMod(const ZZ& e, const zz_pXModulus& F)   { zz_pX x; PowerXMod(x, e, F); NTL_OPT_RETURN(zz_pX, x); }inline void PowerXMod(zz_pX& x, long e, const zz_pXModulus& F)   { PowerXMod(x, ZZ_expo(e), F); }inline zz_pX PowerXMod(long e, const zz_pXModulus& F)   { zz_pX x; PowerXMod(x, e, F); NTL_OPT_RETURN(zz_pX, x); }void PowerXPlusAMod(zz_pX& x, zz_p a, const ZZ& e, const zz_pXModulus& F);// x = (X + a)^e % f, e >= 0inline zz_pX PowerXPlusAMod(zz_p a, const ZZ& e, const zz_pXModulus& F)   { zz_pX x; PowerXPlusAMod(x, a, e, F); NTL_OPT_RETURN(zz_pX, x); }inline void PowerXPlusAMod(zz_pX& x, zz_p a, long e, const zz_pXModulus& F)   { PowerXPlusAMod(x, a, ZZ_expo(e), F); }inline zz_pX PowerXPlusAMod(zz_p a, long e, const zz_pXModulus& F)   { zz_pX x; PowerXPlusAMod(x, a, e, F); NTL_OPT_RETURN(zz_pX, x); }// If you need to compute a * b % f for a fixed b, but for many a's// (for example, computing powers of b modulo f), it is// much more efficient to first build a zz_pXMultiplier B for b,// and then use the routine below.class zz_pXMultiplier {public:   zz_pXMultiplier() : UseFFT(0)  { }   zz_pXMultiplier(const zz_pX& b, const zz_pXModulus& F);   ~zz_pXMultiplier() { }   zz_pX b;      long UseFFT;   fftRep B1;    fftRep B2;    const zz_pX& val() const { return b; }};void build(zz_pXMultiplier& B, const zz_pX& b, const zz_pXModulus& F);void MulMod(zz_pX& x, const zz_pX& a, const zz_pXMultiplier& B,                                      const zz_pXModulus& F);// x = (a * b) % finline zz_pX MulMod(const zz_pX& a, const zz_pXMultiplier& B,                                          const zz_pXModulus& F)   { zz_pX x; MulMod(x, a, B, F); NTL_OPT_RETURN(zz_pX, x); }/*******************************************************              Evaluation and related problems********************************************************/void BuildFromRoots(zz_pX& x, const vec_zz_p& a);// computes the polynomial (X-a[0]) ... (X-a[n-1]), where n = a.length()inline zz_pX BuildFromRoots(const vec_zz_p& a)   { zz_pX x; BuildFromRoots(x, a); NTL_OPT_RETURN(zz_pX, x); }void eval(zz_p& b, const zz_pX& f, zz_p a);// b = f(a)inline zz_p eval(const zz_pX& f, zz_p a)   { zz_p x; eval(x, f, a); return x; }void eval(vec_zz_p& b, const zz_pX& f, const vec_zz_p& a);//  b[i] = f(a[i])inline vec_zz_p eval(const zz_pX& f, const vec_zz_p& a)   { vec_zz_p x; eval(x, f, a); NTL_OPT_RETURN(vec_zz_p, x); }void interpolate(zz_pX& f, const vec_zz_p& a, const vec_zz_p& b);// computes f such that f(a[i]) = b[i]inline zz_pX interpolate(const vec_zz_p& a, const vec_zz_p& b)   { zz_pX x; interpolate(x, a, b); NTL_OPT_RETURN(zz_pX, x); }/*****************************************************************                       vectors of zz_pX's*****************************************************************/NTL_vector_decl(zz_pX,vec_zz_pX)NTL_eq_vector_decl(zz_pX,vec_zz_pX)NTL_io_vector_decl(zz_pX,vec_zz_pX)/**********************************************************         Modular Composition and Minimal Polynomials***********************************************************/// algorithms for computing g(h) mod fvoid CompMod(zz_pX& x, const zz_pX& g, const zz_pX& h, const zz_pXModulus& F);// x = g(h) mod finline zz_pX CompMod(const zz_pX& g, const zz_pX& h,                           const zz_pXModulus& F)   { zz_pX x; CompMod(x, g, h, F); NTL_OPT_RETURN(zz_pX, x); }void Comp2Mod(zz_pX& x1, zz_pX& x2, const zz_pX& g1, const zz_pX& g2,              const zz_pX& h, const zz_pXModulus& F);// xi = gi(h) mod f (i=1,2)void Comp3Mod(zz_pX& x1, zz_pX& x2, zz_pX& x3,               const zz_pX& g1, const zz_pX& g2, const zz_pX& g3,              const zz_pX& h, const zz_pXModulus& F);// xi = gi(h) mod f (i=1..3)// The routine build (see below) which is implicitly called// by the various compose and UpdateMap routines builds a table// of polynomials.  // If zz_pXArgBound > 0, then the table is limited in// size to approximamtely that many KB.// If zz_pXArgBound <= 0, then it is ignored, and space is allocated// so as to maximize speed.// Initially, zz_pXArgBound = 0.// If a single h is going to be used with many g's// then you should build a zz_pXArgument for h,// and then use the compose routine below.// build computes and stores h, h^2, ..., h^m mod f.// After this pre-computation, composing a polynomial of degree // roughly n with h takes n/m multiplies mod f, plus n^2// scalar multiplies.// Thus, increasing m increases the space requirement and the pre-computation// time, but reduces the composition time.// If zz_pXArgBound > 0, a table of size less than m may be built.struct zz_pXArgument {   vec_zz_pX H;};extern long zz_pXArgBound;void build(zz_pXArgument& H, const zz_pX& h, const zz_pXModulus& F, long m);// m must be > 0, otherwise an error is raisedvoid CompMod(zz_pX& x, const zz_pX& g, const zz_pXArgument& H,              const zz_pXModulus& F);inline zz_pXCompMod(const zz_pX& g, const zz_pXArgument& H, const zz_pXModulus& F)   { zz_pX x; CompMod(x, g, H, F); NTL_OPT_RETURN(zz_pX, x); }#ifndef NTL_TRANSITIONvoid UpdateMap(vec_zz_p& x, const vec_zz_p& a,               const zz_pXMultiplier& B, const zz_pXModulus& F);inline vec_zz_pUpdateMap(const vec_zz_p& a,          const zz_pXMultiplier& B, const zz_pXModulus& F)   { vec_zz_p x; UpdateMap(x, a, B, F);     NTL_OPT_RETURN(vec_zz_p, x); }#endif/* computes (a, b), (a, (b*X)%f), ..., (a, (b*X^{n-1})%f),   where ( , ) denotes the vector inner product.   This is really a "transposed" MulMod by B.*/void PlainUpdateMap(vec_zz_p& x, const vec_zz_p& a,                    const zz_pX& b, const zz_pX& f);// same as above, but uses only classical arithmeticvoid ProjectPowers(vec_zz_p& x, const vec_zz_p& a, long k,                   const zz_pX& h, const zz_pXModulus& F);// computes (a, 1), (a, h), ..., (a, h^{k-1} % f)// this is really a "transposed" compose.inline vec_zz_p ProjectPowers(const vec_zz_p& a, long k,                   const zz_pX& h, const zz_pXModulus& F){   vec_zz_p x;   ProjectPowers(x, a, k, h, F);   NTL_OPT_RETURN(vec_zz_p, x);}void ProjectPowers(vec_zz_p& x, const vec_zz_p& a, long k,                   const zz_pXArgument& H, const zz_pXModulus& F);inline vec_zz_p ProjectPowers(const vec_zz_p& a, long k,                   const zz_pXArgument& H, const zz_pXModulus& F){   vec_zz_p x;   ProjectPowers(x, a, k, H, F);   NTL_OPT_RETURN(vec_zz_p, x);}// same as above, but uses a pre-computed zz_pXArgumentinline void project(zz_p& x, const vec_zz_p& a, const zz_pX& b)   { InnerProduct(x, a, b.rep); }inline zz_p project(const vec_zz_p& a, const zz_pX& b)   {  zz_p x; project(x, a, b); return x; }void MinPolySeq(zz_pX& h, const vec_zz_p& a, long m);// computes the minimum polynomial of a linealy generated sequence;// m is a bound on the degree of the polynomial;// required: a.length() >= 2*minline zz_pX MinPolySeq(const vec_zz_p& a, long m)   { zz_pX x; MinPolySeq(x, a, m); NTL_OPT_RETURN(zz_pX, x); }void ProbMinPolyMod(zz_pX& h, const zz_pX& g, const zz_pXModulus& F, long m);inline zz_pX ProbMinPolyMod(const zz_pX& g, const zz_pXModulus& F, long m)   { zz_pX x; ProbMinPolyMod(x, g, F, m); NTL_OPT_RETURN(zz_pX, x); }inline void ProbMinPolyMod(zz_pX& h, const zz_pX& g, const zz_pXModulus& F)   { ProbMinPolyMod(h, g, F, F.n); }inline zz_pX ProbMinPolyMod(const zz_pX& g, const zz_pXModulus& F)   { zz_pX x; ProbMinPolyMod(x, g, F); NTL_OPT_RETURN(zz_pX, x); }// computes the monic minimal polynomial if (g mod f). // m = a bound on the degree of the minimal polynomial.// If this argument is not supplied, it defaults to deg(f).// The algorithm is probabilistic, always returns a divisor of// the minimal polynomial, and returns a proper divisor with// probability at most m/p.void MinPolyMod(zz_pX& h, const zz_pX& g, const zz_pXModulus& F, long m);inline zz_pX MinPolyMod(const zz_pX& g, const zz_pXModulus& F, long m)   { zz_pX x; MinPolyMod(x, g, F, m); NTL_OPT_RETURN(zz_pX, x); }inline void MinPolyMod(zz_pX& h, const zz_pX& g, const zz_pXModulus& F)   { MinPolyMod(h, g, F, F.n); }inline zz_pX MinPolyMod(const zz_pX& g, const zz_pXModulus& F)   { zz_pX x; MinPolyMod(x, g, F); NTL_OPT_RETURN(zz_pX, x); }// same as above, but guarantees that result is correctvoid IrredPolyMod(zz_pX& h, const zz_pX& g, const zz_pXModulus& F, long m);inline zz_pX IrredPolyMod(const zz_pX& g, const zz_pXModulus& F, long m)   { zz_pX x; IrredPolyMod(x, g, F, m); NTL_OPT_RETURN(zz_pX, x); }inline void IrredPolyMod(zz_pX& h, const zz_pX& g, const zz_pXModulus& F)   { IrredPolyMod(h, g, F, F.n); }inline zz_pX IrredPolyMod(const zz_pX& g, const zz_pXModulus& F)   { zz_pX x; IrredPolyMod(x, g, F); NTL_OPT_RETURN(zz_pX, x); }// same as above, but assumes that f is irreducible, // or at least that the minimal poly of g is itself irreducible.// The algorithm is deterministic (and is always correct)./*****************************************************************                   Traces, norms, resultants******************************************************************/void TraceVec(vec_zz_p& S, const zz_pX& f);inline vec_zz_p TraceVec(const zz_pX& f)   { vec_zz_p x; TraceVec(x, f); NTL_OPT_RETURN(vec_zz_p, x); }void FastTraceVec(vec_zz_p& S, const zz_pX& f);void PlainTraceVec(vec_zz_p& S, const zz_pX& f);void TraceMod(zz_p& x, const zz_pX& a, const zz_pXModulus& F);inline zz_p TraceMod(const zz_pX& a, const zz_pXModulus& F)   { zz_p x; TraceMod(x, a, F); return x; }void TraceMod(zz_p& x, const zz_pX& a, const zz_pX& f);inline zz_p TraceMod(const zz_pX& a, const zz_pX& f)   { zz_p x; TraceMod(x, a, f); return x; }void ComputeTraceVec(const zz_pXModulus& F);void NormMod(zz_p& x, const zz_pX& a, const zz_pX& f);inline zz_p NormMod(const zz_pX& a, const zz_pX& f)   { zz_p x; NormMod(x, a, f); return x; }void resultant(zz_p& rres, const zz_pX& a, const zz_pX& b);inline zz_p resultant(const zz_pX& a, const zz_pX& b)   { zz_p x; resultant(x, a, b); return x; }void CharPolyMod(zz_pX& g, const zz_pX& a, const zz_pX& f);// g = char poly of (a mod f)// only implemented for p >= deg(f)+1inline zz_pX CharPolyMod(const zz_pX& a, const zz_pX& f)   { zz_pX x; CharPolyMod(x, a, f); NTL_OPT_RETURN(zz_pX, x); }NTL_CLOSE_NNS#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -