⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lzz_px.h

📁 密码大家Shoup写的数论算法c语言实现
💻 H
📖 第 1 页 / 共 3 页
字号:
inline zz_pX operator-(const zz_pX& a)   { zz_pX x; negate(x, a); NTL_OPT_RETURN(zz_pX, x); }inline zz_pX& operator++(zz_pX& x) { add(x, x, 1); return x; }inline void operator++(zz_pX& x, int) { add(x, x, 1); }inline zz_pX& operator--(zz_pX& x) { sub(x, x, 1); return x; }inline void operator--(zz_pX& x, int) { sub(x, x, 1); }/*****************************************************************                        Multiplication******************************************************************/void mul(zz_pX& x, const zz_pX& a, const zz_pX& b);// x = a * bvoid sqr(zz_pX& x, const zz_pX& a);inline zz_pX sqr(const zz_pX& a)   { zz_pX x; sqr(x, a); NTL_OPT_RETURN(zz_pX, x); }// x = a^2void mul(zz_pX& x, const zz_pX& a, zz_p b);inline void mul(zz_pX& x, const zz_pX& a, long b) { mul(x, a, to_zz_p(b)); }inline void mul(zz_pX& x, zz_p a, const zz_pX& b) { mul(x, b, a); }inline void mul(zz_pX& x, long a, const zz_pX& b) { mul(x, b, a); }inline zz_pX operator*(const zz_pX& a, const zz_pX& b)   { zz_pX x; mul(x, a, b); NTL_OPT_RETURN(zz_pX, x); }inline zz_pX operator*(const zz_pX& a, zz_p b)   { zz_pX x; mul(x, a, b); NTL_OPT_RETURN(zz_pX, x); }inline zz_pX operator*(const zz_pX& a, long b)   { zz_pX x; mul(x, a, b); NTL_OPT_RETURN(zz_pX, x); }inline zz_pX operator*(zz_p a, const zz_pX& b)   { zz_pX x; mul(x, a, b); NTL_OPT_RETURN(zz_pX, x); }inline zz_pX operator*(long a, const zz_pX& b)   { zz_pX x; mul(x, a, b); NTL_OPT_RETURN(zz_pX, x); }inline zz_pX& operator*=(zz_pX& x, const zz_pX& b)   { mul(x, x, b); return x; }inline zz_pX& operator*=(zz_pX& x, zz_p b)   { mul(x, x, b); return x; }inline zz_pX& operator*=(zz_pX& x, long b)   { mul(x, x, b); return x; }void PlainMul(zz_pX& x, const zz_pX& a, const zz_pX& b);// always uses the "classical" algorithmvoid PlainSqr(zz_pX& x, const zz_pX& a);// always uses the "classical" algorithmvoid FFTMul(zz_pX& x, const zz_pX& a, const zz_pX& b);// always uses the FFTvoid FFTSqr(zz_pX& x, const zz_pX& a);// always uses the FFTvoid MulTrunc(zz_pX& x, const zz_pX& a, const zz_pX& b, long n);// x = a * b % X^ninline zz_pX MulTrunc(const zz_pX& a, const zz_pX& b, long n)   { zz_pX x; MulTrunc(x, a, b, n); NTL_OPT_RETURN(zz_pX, x); }void PlainMulTrunc(zz_pX& x, const zz_pX& a, const zz_pX& b, long n);void FFTMulTrunc(zz_pX& x, const zz_pX& a, const zz_pX& b, long n);void SqrTrunc(zz_pX& x, const zz_pX& a, long n);// x = a^2 % X^ninline zz_pX SqrTrunc(const zz_pX& a, long n)   { zz_pX x; SqrTrunc(x, a, n); NTL_OPT_RETURN(zz_pX, x); }void PlainSqrTrunc(zz_pX& x, const zz_pX& a, long n);void FFTSqrTrunc(zz_pX& x, const zz_pX& a, long n);void power(zz_pX& x, const zz_pX& a, long e);inline zz_pX power(const zz_pX& a, long e)   { zz_pX x; power(x, a, e); NTL_OPT_RETURN(zz_pX, x); }// The following data structures and routines allow one// to hand-craft various algorithms, using the FFT convolution// algorithms directly.// Look in the file zz_pX.c for examples.// FFT representation of polynomialsclass fftRep {public:   long k;                // a 2^k point representation   long MaxK;             // maximum space allocated   long *tbl[4];   long NumPrimes;   fftRep(const fftRep&);    fftRep& operator=(const fftRep&);    void SetSize(long NewK);   fftRep() { k = MaxK = -1; NumPrimes = zz_pInfo->NumPrimes; }   fftRep(INIT_SIZE_TYPE, long InitK)    { k = MaxK = -1; NumPrimes = zz_pInfo->NumPrimes; SetSize(InitK); }   ~fftRep();};void TofftRep(fftRep& y, const zz_pX& x, long k, long lo, long hi);// computes an n = 2^k point convolution of x[lo..hi].inline void TofftRep(fftRep& y, const zz_pX& x, long k)   { TofftRep(y, x, k, 0, deg(x)); }void RevTofftRep(fftRep& y, const vec_zz_p& x,                 long k, long lo, long hi, long offset);// computes an n = 2^k point convolution of X^offset*x[lo..hi] mod X^n-1// using "inverted" evaluation points.void FromfftRep(zz_pX& x, fftRep& y, long lo, long hi);// converts from FFT-representation to coefficient representation// only the coefficients lo..hi are computed// NOTE: this version destroys the data in y// non-destructive versions of the abovevoid NDFromfftRep(zz_pX& x, const fftRep& y, long lo, long hi, fftRep& temp);void NDFromfftRep(zz_pX& x, const fftRep& y, long lo, long hi);void RevFromfftRep(vec_zz_p& x, fftRep& y, long lo, long hi);   // converts from FFT-representation to coefficient representation   // using "inverted" evaluation points.   // only the coefficients lo..hi are computedvoid FromfftRep(zz_p* x, fftRep& y, long lo, long hi);// convert out coefficients lo..hi of y, store result in x.// no normalization is done.// direct manipulation of FFT repsvoid mul(fftRep& z, const fftRep& x, const fftRep& y);void sub(fftRep& z, const fftRep& x, const fftRep& y);void add(fftRep& z, const fftRep& x, const fftRep& y);void reduce(fftRep& x, const fftRep& a, long k);// reduces a 2^l point FFT-rep to a 2^k point FFT-repvoid AddExpand(fftRep& x, const fftRep& a);//  x = x + (an "expanded" version of a)/*************************************************************                      Division**************************************************************/void DivRem(zz_pX& q, zz_pX& r, const zz_pX& a, const zz_pX& b);// q = a/b, r = a%bvoid div(zz_pX& q, const zz_pX& a, const zz_pX& b);// q = a/bvoid div(zz_pX& q, const zz_pX& a, zz_p b);inline void div(zz_pX& q, const zz_pX& a, long b)   { div(q, a, to_zz_p(b)); }void rem(zz_pX& r, const zz_pX& a, const zz_pX& b);// r = a%blong divide(zz_pX& q, const zz_pX& a, const zz_pX& b);// if b | a, sets q = a/b and returns 1; otherwise returns 0long divide(const zz_pX& a, const zz_pX& b);// if b | a, sets q = a/b and returns 1; otherwise returns 0void InvTrunc(zz_pX& x, const zz_pX& a, long m);// computes x = a^{-1} % X^m // constant term must be non-zeroinline zz_pX InvTrunc(const zz_pX& a, long m)   { zz_pX x; InvTrunc(x, a, m); NTL_OPT_RETURN(zz_pX, x); }// These always use "classical" arithmeticvoid PlainDivRem(zz_pX& q, zz_pX& r, const zz_pX& a, const zz_pX& b);void PlainDiv(zz_pX& q, const zz_pX& a, const zz_pX& b);void PlainRem(zz_pX& r, const zz_pX& a, const zz_pX& b);// These always use FFT arithmeticvoid FFTDivRem(zz_pX& q, zz_pX& r, const zz_pX& a, const zz_pX& b);void FFTDiv(zz_pX& q, const zz_pX& a, const zz_pX& b);void FFTRem(zz_pX& r, const zz_pX& a, const zz_pX& b);void PlainInvTrunc(zz_pX& x, const zz_pX& a, long m);// always uses "classical" algorithm// ALIAS RESTRICTION: input may not alias outputvoid NewtonInvTrunc(zz_pX& x, const zz_pX& a, long m);// uses a Newton Iteration with the FFT.// ALIAS RESTRICTION: input may not alias outputinline zz_pX operator/(const zz_pX& a, const zz_pX& b)   { zz_pX x; div(x, a, b); NTL_OPT_RETURN(zz_pX, x); }inline zz_pX operator/(const zz_pX& a, zz_p b)   { zz_pX x; div(x, a, b); NTL_OPT_RETURN(zz_pX, x); }inline zz_pX operator/(const zz_pX& a, long b)   { zz_pX x; div(x, a, b); NTL_OPT_RETURN(zz_pX, x); }inline zz_pX& operator/=(zz_pX& x, zz_p b)   { div(x, x, b); return x; }inline zz_pX& operator/=(zz_pX& x, long b)   { div(x, x, b); return x; }inline zz_pX& operator/=(zz_pX& x, const zz_pX& b)   { div(x, x, b); return x; }inline zz_pX operator%(const zz_pX& a, const zz_pX& b)   { zz_pX x; rem(x, a, b); NTL_OPT_RETURN(zz_pX, x); }inline zz_pX& operator%=(zz_pX& x, const zz_pX& b)   { rem(x, x, b); return x; }/***********************************************************                         GCD's************************************************************/void GCD(zz_pX& x, const zz_pX& a, const zz_pX& b);// x = GCD(a, b),  x is always monic (or zero if a==b==0).inline zz_pX GCD(const zz_pX& a, const zz_pX& b)   { zz_pX x; GCD(x, a, b); NTL_OPT_RETURN(zz_pX, x); }void XGCD(zz_pX& d, zz_pX& s, zz_pX& t, const zz_pX& a, const zz_pX& b);// d = gcd(a,b), a s + b t = d void PlainXGCD(zz_pX& d, zz_pX& s, zz_pX& t, const zz_pX& a, const zz_pX& b);// same as above, but uses classical algorithmvoid PlainGCD(zz_pX& x, const zz_pX& a, const zz_pX& b);// always uses "cdlassical" arithmeticclass zz_pXMatrix {private:   zz_pXMatrix(const zz_pXMatrix&);  // disable   zz_pX elts[2][2];public:   zz_pXMatrix() { }   ~zz_pXMatrix() { }   void operator=(const zz_pXMatrix&);   zz_pX& operator() (long i, long j) { return elts[i][j]; }   const zz_pX& operator() (long i, long j) const { return elts[i][j]; }};void HalfGCD(zz_pXMatrix& M_out, const zz_pX& U, const zz_pX& V, long d_red);// deg(U) > deg(V),   1 <= d_red <= deg(U)+1.//// This computes a 2 x 2 polynomial matrix M_out such that//    M_out * (U, V)^T = (U', V')^T,// where U', V' are consecutive polynomials in the Euclidean remainder// sequence of U, V, and V' is the polynomial of highest degree// satisfying deg(V') <= deg(U) - d_red.void XHalfGCD(zz_pXMatrix& M_out, zz_pX& U, zz_pX& V, long d_red);// same as above, except that U is replaced by U', and V by V'/*************************************************************             Modular Arithmetic without pre-conditioning**************************************************************/// arithmetic mod f.// all inputs and outputs are polynomials of degree less than deg(f).// ASSUMPTION: f is assumed monic, and deg(f) > 0.// NOTE: if you want to do many computations with a fixed f,//       use the zz_pXModulus data structure and associated routines below.void MulMod(zz_pX& x, const zz_pX& a, const zz_pX& b, const zz_pX& f);// x = (a * b) % finline zz_pX MulMod(const zz_pX& a, const zz_pX& b, const zz_pX& f)   { zz_pX x; MulMod(x, a, b, f); NTL_OPT_RETURN(zz_pX, x); }void SqrMod(zz_pX& x, const zz_pX& a, const zz_pX& f);// x = a^2 % finline zz_pX SqrMod(const zz_pX& a, const zz_pX& f)   { zz_pX x; SqrMod(x, a, f); NTL_OPT_RETURN(zz_pX, x); }void MulByXMod(zz_pX& x, const zz_pX& a, const zz_pX& f);// x = (a * X) mod finline zz_pX MulByXMod(const zz_pX& a, const zz_pX& f)   { zz_pX x; MulByXMod(x, a, f); NTL_OPT_RETURN(zz_pX, x); }void InvMod(zz_pX& x, const zz_pX& a, const zz_pX& f);// x = a^{-1} % f, error is a is not invertibleinline zz_pX InvMod(const zz_pX& a, const zz_pX& f)   { zz_pX x; InvMod(x, a, f); NTL_OPT_RETURN(zz_pX, x); }long InvModStatus(zz_pX& x, const zz_pX& a, const zz_pX& f);// if (a, f) = 1, returns 0 and sets x = a^{-1} % f// otherwise, returns 1 and sets x = (a, f)/******************************************************************        Modular Arithmetic with Pre-conditioning*******************************************************************/// If you need to do a lot of arithmetic modulo a fixed f,// build zz_pXModulus F for f.  This pre-computes information about f// that speeds up the computation a great deal.class zz_pXModulus {public:   zz_pXModulus() : UseFFT(0), n(-1)  { }   ~zz_pXModulus() { }   zz_pX f;   // the modulus   long UseFFT;// flag indicating whether FFT should be used.   long n;     // n = deg(f)   long k;     // least k s/t 2^k >= n   long l;     // least l s/t 2^l >= 2n-3   fftRep FRep; // 2^k point rep of f                // H = rev((rev(f))^{-1} rem X^{n-1})   fftRep HRep; // 2^l point rep of H   vec_zz_p tracevec;  // mutable   zz_pXModulus(const zz_pX& ff);   operator const zz_pX& () const { return f; }   const zz_pX& val() const { return f; }};inline long deg(const zz_pXModulus& F) { return F.n; }void build(zz_pXModulus& F, const zz_pX& f);// deg(f) > 0void rem21(zz_pX& x, const zz_pX& a, const zz_pXModulus& F);// x = a % f// deg(a) <= 2(n-1), where n = F.n = deg(f)void rem(zz_pX& x, const zz_pX& a, const zz_pXModulus& F);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -