📄 zz_pexfactoring.h
字号:
#ifndef NTL_ZZ_pEXFactoring__H#define NTL_ZZ_pEXFactoring__H#include <NTL/pair_ZZ_pEX_long.h>NTL_OPEN_NNSvoid SquareFreeDecomp(vec_pair_ZZ_pEX_long& u, const ZZ_pEX& f);inline vec_pair_ZZ_pEX_long SquareFreeDecomp(const ZZ_pEX& f) { vec_pair_ZZ_pEX_long x; SquareFreeDecomp(x, f); return x; }// Performs square-free decomposition.// f must be monic.// If f = prod_i g_i^i, then u is set to a lest of pairs (g_i, i).// The list is is increasing order of i, with trivial terms // (i.e., g_i = 1) deleted.void FindRoots(vec_ZZ_pE& x, const ZZ_pEX& f);inline vec_ZZ_pE FindRoots(const ZZ_pEX& f) { vec_ZZ_pE x; FindRoots(x, f); return x; }// f is monic, and has deg(f) distinct roots.// returns the list of rootsvoid FindRoot(ZZ_pE& root, const ZZ_pEX& f);inline ZZ_pE FindRoot(const ZZ_pEX& f) { ZZ_pE x; FindRoot(x, f); return x; }// finds a single root of f.// assumes that f is monic and splits into distinct linear factorsextern long ZZ_pEX_GCDTableSize; /* = 4 */// Controls GCD blocking for NewDDFextern char ZZ_pEX_stem[]; // Determines filename stem for external storage in NewDDF.extern double ZZ_pEXFileThresh; /* 128 */// external files are used for baby/giant steps if size// of these tables exceeds ZZ_pEXFileThresh KB.void NewDDF(vec_pair_ZZ_pEX_long& factors, const ZZ_pEX& f, const ZZ_pEX& h, long verbose=0);inline vec_pair_ZZ_pEX_long NewDDF(const ZZ_pEX& f, const ZZ_pEX& h, long verbose=0) { vec_pair_ZZ_pEX_long x; NewDDF(x, f, h, verbose); return x; }void EDF(vec_ZZ_pEX& factors, const ZZ_pEX& f, const ZZ_pEX& b, long d, long verbose=0);inline vec_ZZ_pEX EDF(const ZZ_pEX& f, const ZZ_pEX& b, long d, long verbose=0) { vec_ZZ_pEX x; EDF(x, f, b, d, verbose); return x; }// Performs equal-degree factorization.// f is monic, square-free, and all irreducible factors have same degree.// b = X^p mod f.// d = degree of irreducible factors of f// Space for the trace-map computation can be controlled via ComposeBound.void RootEDF(vec_ZZ_pEX& factors, const ZZ_pEX& f, long verbose=0);inline vec_ZZ_pEX RootEDF(const ZZ_pEX& f, long verbose=0) { vec_ZZ_pEX x; RootEDF(x, f, verbose); return x; }// EDF for d==1void SFCanZass(vec_ZZ_pEX& factors, const ZZ_pEX& f, long verbose=0);inline vec_ZZ_pEX SFCanZass(const ZZ_pEX& f, long verbose=0) { vec_ZZ_pEX x; SFCanZass(x, f, verbose); return x; }// Assumes f is monic and square-free.// returns list of factors of f.// Uses "Cantor/Zassenhaus" approach.void CanZass(vec_pair_ZZ_pEX_long& factors, const ZZ_pEX& f, long verbose=0);inline vec_pair_ZZ_pEX_long CanZass(const ZZ_pEX& f, long verbose=0) { vec_pair_ZZ_pEX_long x; CanZass(x, f, verbose); return x; }// returns a list of factors, with multiplicities.// f must be monic.// Uses "Cantor/Zassenhaus" approach.void mul(ZZ_pEX& f, const vec_pair_ZZ_pEX_long& v);inline ZZ_pEX mul(const vec_pair_ZZ_pEX_long& v) { ZZ_pEX x; mul(x, v); return x; }// multiplies polynomials, with multiplicities/************************************************************* irreducible poly's: tests and constructions**************************************************************/long ProbIrredTest(const ZZ_pEX& f, long iter=1);// performs a fast, probabilistic irreduciblity test// the test can err only if f is reducible, and the// error probability is bounded by p^{-iter}.long DetIrredTest(const ZZ_pEX& f);// performs a recursive deterministic irreducibility test// fast in the worst-case (when input is irreducible).long IterIrredTest(const ZZ_pEX& f);// performs an iterative deterministic irreducibility test,// based on DDF. Fast on average (when f has a small factor).void BuildIrred(ZZ_pEX& f, long n);inline ZZ_pEX BuildIrred_ZZ_pEX(long n) { ZZ_pEX x; BuildIrred(x, n); NTL_OPT_RETURN(ZZ_pEX, x); }// Build a monic irreducible poly of degree n.void BuildRandomIrred(ZZ_pEX& f, const ZZ_pEX& g);inline ZZ_pEX BuildRandomIrred(const ZZ_pEX& g) { ZZ_pEX x; BuildRandomIrred(x, g); NTL_OPT_RETURN(ZZ_pEX, x); }// g is a monic irreducible polynomial.// constructs a random monic irreducible polynomial f of the same degree.long RecComputeDegree(const ZZ_pEX& h, const ZZ_pEXModulus& F);// f = F.f is assumed to be an "equal degree" polynomial// h = X^p mod f// the common degree of the irreducible factors of f is computed// This routine is useful in counting points on elliptic curveslong IterComputeDegree(const ZZ_pEX& h, const ZZ_pEXModulus& F);void TraceMap(ZZ_pEX& w, const ZZ_pEX& a, long d, const ZZ_pEXModulus& F, const ZZ_pEX& b);inline ZZ_pEX TraceMap(const ZZ_pEX& a, long d, const ZZ_pEXModulus& F, const ZZ_pEX& b) { ZZ_pEX x; TraceMap(x, a, d, F, b); return x; }// w = a+a^q+...+^{q^{d-1}} mod f;// it is assumed that d >= 0, and b = X^q mod f, q a power of p// Space allocation can be controlled via ComposeBound (see <NTL/ZZ_pEX.h>)void PowerCompose(ZZ_pEX& w, const ZZ_pEX& a, long d, const ZZ_pEXModulus& F);inline ZZ_pEX PowerCompose(const ZZ_pEX& a, long d, const ZZ_pEXModulus& F) { ZZ_pEX x; PowerCompose(x, a, d, F); return x; }// w = X^{q^d} mod f;// it is assumed that d >= 0, and b = X^q mod f, q a power of p// Space allocation can be controlled via ComposeBound (see <NTL/ZZ_pEX.h>)NTL_CLOSE_NNS#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -