📄 zz_p.h
字号:
#ifndef NTL_ZZ_p__H#define NTL_ZZ_p__H#include <NTL/ZZ.h>#include <NTL/ZZVec.h>NTL_OPEN_NNS// _ZZ_p__representation: each ZZ_p is represented by a ZZ in the range 0..p-1.// The constructor for a ZZ_p pre-allocates space for the underlying ZZ,// and initializes it to zero.const int MAX_ZZ_p_TEMPS = 16;class ZZ_p;class ZZ_pInfoT {private: ZZ_pInfoT(); // disabled ZZ_pInfoT(const ZZ_pInfoT&); // disabled void operator=(const ZZ_pInfoT&); // disabledpublic: ZZ_pInfoT(const ZZ& NewP); ~ZZ_pInfoT(); long ref_count; // reference count for gargabge collection ZZ p; // the modulus long size; // p.size() long ExtendedModulusSize; // the following implement a "lazy" initialization strategy long initialized; // flag if initialization really was done void init(); void check() { if (!initialized) init(); } long NumPrimes; long MaxRoot; long QuickCRT; ZZ MinusMModP; // -M mod p, M = product of primes void *crt_struct; void *rem_struct; // the following arrays are indexed 0..NumPrimes-1 // q = FFTPrime[i] double *x; // u/q, where u = (M/q)^{-1} mod q long *u; // u, as above double **tbl; // table used for MultiRem; only with NTL_SINGLE_MUL long **tbl1; // table used for MultiRem; only with NTL_TBL_REM ZZ_p *temps[MAX_ZZ_p_TEMPS]; long temps_top;};extern ZZ_pInfoT *ZZ_pInfo; // info for current modulus, initially nullclass ZZ_pContext {private:ZZ_pInfoT *ptr;public:void save();void restore() const;ZZ_pContext() { ptr = 0; }ZZ_pContext(const ZZ& p);ZZ_pContext(const ZZ_pContext&); ZZ_pContext& operator=(const ZZ_pContext&); ~ZZ_pContext();};class ZZ_pBak {private:long MustRestore;ZZ_pInfoT *ptr;ZZ_pBak(const ZZ_pBak&); // disabledvoid operator=(const ZZ_pBak&); // disabledpublic:void save();void restore();ZZ_pBak() { MustRestore = 0; ptr = 0; }~ZZ_pBak();};struct ZZ_p_NoAlloc_type { ZZ_p_NoAlloc_type() { } };const ZZ_p_NoAlloc_type ZZ_p_NoAlloc = ZZ_p_NoAlloc_type();class ZZ_pTemp {private: long pos;public: ZZ_pTemp(); ~ZZ_pTemp(); ZZ_p& val() const;};#define NTL_ZZ_pRegister(x) \ ZZ_pTemp ZZ_pTemp__ ## x; ZZ_p& x = ZZ_pTemp__ ## x . val()class ZZ_p {public:ZZ _ZZ_p__rep;static void init(const ZZ&);typedef void (*DivHandlerPtr)(const ZZ_p& a); // error-handler for divisionstatic DivHandlerPtr DivHandler;// ****** constructors and assignmentZZ_p();ZZ_p(const ZZ_p& a) : _ZZ_p__rep(INIT_SIZE, ZZ_pInfo->size) { _ZZ_p__rep = a._ZZ_p__rep; }ZZ_p(ZZ_p_NoAlloc_type) { } // allocates no space~ZZ_p() { } ZZ_p& operator=(const ZZ_p& a) { _ZZ_p__rep = a._ZZ_p__rep; return *this; }inline ZZ_p& operator=(long a);// You can always access the _ZZ_p__representation directly...if you dare.ZZ& LoopHole() { return _ZZ_p__rep; }ZZ_p(ZZ_p& x, INIT_TRANS_TYPE) : _ZZ_p__rep(x._ZZ_p__rep, INIT_TRANS) { }static const ZZ& modulus() { return ZZ_pInfo->p; }static long ModulusSize() { return ZZ_pInfo->size; }static long storage() { return ZZ_storage(ZZ_pInfo->size); }static const ZZ_p& zero();ZZ_p(INIT_VAL_TYPE, const ZZ& a);ZZ_p(INIT_VAL_TYPE, long a);};// read-only access to _ZZ_p__representationinline const ZZ& rep(const ZZ_p& a) { return a._ZZ_p__rep; }// ****** conversioninline void conv(ZZ_p& x, const ZZ& a) { rem(x._ZZ_p__rep, a, ZZ_p::modulus()); }inline ZZ_p to_ZZ_p(const ZZ& a) { return ZZ_p(INIT_VAL, a); }void conv(ZZ_p& x, long a);inline ZZ_p to_ZZ_p(long a) { return ZZ_p(INIT_VAL, a); }// ****** some basicsinline void clear(ZZ_p& x)// x = 0 { clear(x._ZZ_p__rep); }inline void set(ZZ_p& x)// x = 1 { set(x._ZZ_p__rep); }inline void swap(ZZ_p& x, ZZ_p& y)// swap x and y { swap(x._ZZ_p__rep, y._ZZ_p__rep); }// ****** additioninline void add(ZZ_p& x, const ZZ_p& a, const ZZ_p& b)// x = a + b { AddMod(x._ZZ_p__rep, a._ZZ_p__rep, b._ZZ_p__rep, ZZ_p::modulus()); }inline void sub(ZZ_p& x, const ZZ_p& a, const ZZ_p& b)// x = a - b { SubMod(x._ZZ_p__rep, a._ZZ_p__rep, b._ZZ_p__rep, ZZ_p::modulus()); }inline void negate(ZZ_p& x, const ZZ_p& a)// x = -a { NegateMod(x._ZZ_p__rep, a._ZZ_p__rep, ZZ_p::modulus()); }// scalar versionsvoid add(ZZ_p& x, const ZZ_p& a, long b);inline void add(ZZ_p& x, long a, const ZZ_p& b) { add(x, b, a); }void sub(ZZ_p& x, const ZZ_p& a, long b);void sub(ZZ_p& x, long a, const ZZ_p& b);// ****** multiplicationinline void mul(ZZ_p& x, const ZZ_p& a, const ZZ_p& b)// x = a*b { MulMod(x._ZZ_p__rep, a._ZZ_p__rep, b._ZZ_p__rep, ZZ_p::modulus()); }inline void sqr(ZZ_p& x, const ZZ_p& a)// x = a^2 { SqrMod(x._ZZ_p__rep, a._ZZ_p__rep, ZZ_p::modulus()); }inline ZZ_p sqr(const ZZ_p& a) { ZZ_p x; sqr(x, a); NTL_OPT_RETURN(ZZ_p, x); }// scalar versionsvoid mul(ZZ_p& x, const ZZ_p& a, long b);inline void mul(ZZ_p& x, long a, const ZZ_p& b) { mul(x, b, a); }// ****** divisionvoid div(ZZ_p& x, const ZZ_p& a, const ZZ_p& b);// x = a/b// If b != 0 & b not invertible & DivHandler != 0,// then DivHandler will be called with the offending b.// In this case, of course, p is not really prime, and one// can factor p by taking a gcd with rep(b).// Otherwise, if b is not invertible, an error occurs.void inv(ZZ_p& x, const ZZ_p& a);// x = 1/a// Error handling is the same as above.inline ZZ_p inv(const ZZ_p& a) { ZZ_p x; inv(x, a); NTL_OPT_RETURN(ZZ_p, x); }void div(ZZ_p& x, const ZZ_p& a, long b);void div(ZZ_p& x, long a, const ZZ_p& b);// operator notation:inline ZZ_p operator+(const ZZ_p& a, const ZZ_p& b) { ZZ_p x; add(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }inline ZZ_p operator+(const ZZ_p& a, long b) { ZZ_p x; add(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }inline ZZ_p operator+(long a, const ZZ_p& b) { ZZ_p x; add(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }inline ZZ_p& operator+=(ZZ_p& x, const ZZ_p& b) { add(x, x, b); return x; } inline ZZ_p& operator+=(ZZ_p& x, long b) { add(x, x, b); return x; } inline ZZ_p operator-(const ZZ_p& a, const ZZ_p& b) { ZZ_p x; sub(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }inline ZZ_p operator-(const ZZ_p& a, long b) { ZZ_p x; sub(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }inline ZZ_p operator-(long a, const ZZ_p& b) { ZZ_p x; sub(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }inline ZZ_p& operator-=(ZZ_p& x, const ZZ_p& b) { sub(x, x, b); return x; } inline ZZ_p& operator-=(ZZ_p& x, long b) { sub(x, x, b); return x; } inline ZZ_p operator*(const ZZ_p& a, const ZZ_p& b) { ZZ_p x; mul(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }inline ZZ_p operator*(const ZZ_p& a, long b) { ZZ_p x; mul(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }inline ZZ_p operator*(long a, const ZZ_p& b) { ZZ_p x; mul(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }inline ZZ_p& operator*=(ZZ_p& x, const ZZ_p& b) { mul(x, x, b); return x; } inline ZZ_p& operator*=(ZZ_p& x, long b) { mul(x, x, b); return x; } inline ZZ_p operator/(const ZZ_p& a, const ZZ_p& b) { ZZ_p x; div(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }inline ZZ_p operator/(const ZZ_p& a, long b) { ZZ_p x; div(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }inline ZZ_p operator/(long a, const ZZ_p& b) { ZZ_p x; div(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }inline ZZ_p& operator/=(ZZ_p& x, const ZZ_p& b) { div(x, x, b); return x; } inline ZZ_p& operator/=(ZZ_p& x, long b) { div(x, x, b); return x; } inline ZZ_p operator-(const ZZ_p& a) { ZZ_p x; negate(x, a); NTL_OPT_RETURN(ZZ_p, x); }inline ZZ_p& operator++(ZZ_p& x) { add(x, x, 1); return x; }inline void operator++(ZZ_p& x, int) { add(x, x, 1); }inline ZZ_p& operator--(ZZ_p& x) { sub(x, x, 1); return x; }inline void operator--(ZZ_p& x, int) { sub(x, x, 1); }// ****** exponentiationinline void power(ZZ_p& x, const ZZ_p& a, const ZZ& e) { PowerMod(x._ZZ_p__rep, a._ZZ_p__rep, e, ZZ_p::modulus()); }inline ZZ_p power(const ZZ_p& a, const ZZ& e) { ZZ_p x; power(x, a, e); NTL_OPT_RETURN(ZZ_p, x); }inline void power(ZZ_p& x, const ZZ_p& a, long e) { PowerMod(x._ZZ_p__rep, a._ZZ_p__rep, e, ZZ_p::modulus()); }inline ZZ_p power(const ZZ_p& a, long e) { ZZ_p x; power(x, a, e); NTL_OPT_RETURN(ZZ_p, x); }// ****** comparisoninline long IsZero(const ZZ_p& a) { return IsZero(a._ZZ_p__rep); }inline long IsOne(const ZZ_p& a) { return IsOne(a._ZZ_p__rep); }inline long operator==(const ZZ_p& a, const ZZ_p& b) { return a._ZZ_p__rep == b._ZZ_p__rep; }inline long operator!=(const ZZ_p& a, const ZZ_p& b) { return !(a == b); }long operator==(const ZZ_p& a, long b);inline long operator==(long a, const ZZ_p& b) { return b == a; }inline long operator!=(const ZZ_p& a, long b) { return !(a == b); }inline long operator!=(long a, const ZZ_p& b) { return !(a == b); }// ****** random numbersinline void random(ZZ_p& x)// x = random element in ZZ_p { RandomBnd(x._ZZ_p__rep, ZZ_p::modulus()); }inline ZZ_p random_ZZ_p() { ZZ_p x; random(x); NTL_OPT_RETURN(ZZ_p, x); }// ****** input/outputinline NTL_SNS ostream& operator<<(NTL_SNS ostream& s, const ZZ_p& a) { return s << a._ZZ_p__rep; } NTL_SNS istream& operator>>(NTL_SNS istream& s, ZZ_p& x);inline ZZ_p& ZZ_p::operator=(long a) { conv(*this, a); return *this; }NTL_CLOSE_NNS#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -