📄 gf2ex.h
字号:
// constant term must be non-zeroinline GF2EX operator/(const GF2EX& a, const GF2EX& b) { GF2EX x; div(x, a, b); NTL_OPT_RETURN(GF2EX, x); }inline GF2EX operator/(const GF2EX& a, const GF2E& b) { GF2EX x; div(x, a, b); NTL_OPT_RETURN(GF2EX, x); }inline GF2EX operator/(const GF2EX& a, GF2 b) { GF2EX x; div(x, a, b); NTL_OPT_RETURN(GF2EX, x); }inline GF2EX operator/(const GF2EX& a, long b) { GF2EX x; div(x, a, b); NTL_OPT_RETURN(GF2EX, x); }inline GF2EX& operator/=(GF2EX& x, const GF2EX& b) { div(x, x, b); return x; }inline GF2EX& operator/=(GF2EX& x, const GF2E& b) { div(x, x, b); return x; }inline GF2EX& operator/=(GF2EX& x, GF2 b) { div(x, x, b); return x; }inline GF2EX& operator/=(GF2EX& x, long b) { div(x, x, b); return x; }inline GF2EX operator%(const GF2EX& a, const GF2EX& b) { GF2EX x; rem(x, a, b); NTL_OPT_RETURN(GF2EX, x); }inline GF2EX& operator%=(GF2EX& x, const GF2EX& b) { rem(x, x, b); return x; }/*********************************************************** GCD's************************************************************/void GCD(GF2EX& x, const GF2EX& a, const GF2EX& b);inline GF2EX GCD(const GF2EX& a, const GF2EX& b) { GF2EX x; GCD(x, a, b); NTL_OPT_RETURN(GF2EX, x); }// x = GCD(a, b), x is always monic (or zero if a==b==0).void XGCD(GF2EX& d, GF2EX& s, GF2EX& t, const GF2EX& a, const GF2EX& b);// d = gcd(a,b), a s + b t = d /************************************************************* Modular Arithmetic without pre-conditioning**************************************************************/// arithmetic mod f.// all inputs and outputs are polynomials of degree less than deg(f).// ASSUMPTION: f is assumed monic, and deg(f) > 0.// NOTE: if you want to do many computations with a fixed f,// use the GF2EXModulus data structure and associated routines below.void MulMod(GF2EX& x, const GF2EX& a, const GF2EX& b, const GF2EX& f);inline GF2EX MulMod(const GF2EX& a, const GF2EX& b, const GF2EX& f) { GF2EX x; MulMod(x, a, b, f); NTL_OPT_RETURN(GF2EX, x); }// x = (a * b) % fvoid SqrMod(GF2EX& x, const GF2EX& a, const GF2EX& f);inline GF2EX SqrMod(const GF2EX& a, const GF2EX& f) { GF2EX x; SqrMod(x, a, f); NTL_OPT_RETURN(GF2EX, x); }// x = a^2 % fvoid MulByXMod(GF2EX& x, const GF2EX& a, const GF2EX& f);inline GF2EX MulByXMod(const GF2EX& a, const GF2EX& f) { GF2EX x; MulByXMod(x, a, f); NTL_OPT_RETURN(GF2EX, x); }// x = (a * X) mod fvoid InvMod(GF2EX& x, const GF2EX& a, const GF2EX& f);inline GF2EX InvMod(const GF2EX& a, const GF2EX& f) { GF2EX x; InvMod(x, a, f); NTL_OPT_RETURN(GF2EX, x); }// x = a^{-1} % f, error is a is not invertiblelong InvModStatus(GF2EX& x, const GF2EX& a, const GF2EX& f);// if (a, f) = 1, returns 0 and sets x = a^{-1} % f// otherwise, returns 1 and sets x = (a, f)/****************************************************************** Modular Arithmetic with Pre-conditioning*******************************************************************/// If you need to do a lot of arithmetic modulo a fixed f,// build GF2EXModulus F for f. This pre-computes information about f// that speeds up the computation a great deal.class GF2EXModulus {public: GF2EXModulus(); ~GF2EXModulus() { } GF2EXModulus(const GF2EX& ff); GF2EX f; // the modulus operator const GF2EX& () const { return f; } const GF2EX& val() const { return f; } long n; // deg(f) long method; // GF2EX_MOD_PLAIN or GF2EX_MOD_MUL GF2EX h0; GF2E hlc; GF2EX f0; vec_GF2E tracevec;}; inline long deg(const GF2EXModulus& F) { return F.n; }void build(GF2EXModulus& F, const GF2EX& f);void rem(GF2EX& r, const GF2EX& a, const GF2EXModulus& F); void DivRem(GF2EX& q, GF2EX& r, const GF2EX& a, const GF2EXModulus& F);void div(GF2EX& q, const GF2EX& a, const GF2EXModulus& F);void MulMod(GF2EX& c, const GF2EX& a, const GF2EX& b, const GF2EXModulus& F);inline GF2EX MulMod(const GF2EX& a, const GF2EX& b, const GF2EXModulus& F) { GF2EX x; MulMod(x, a, b, F); NTL_OPT_RETURN(GF2EX, x); }void SqrMod(GF2EX& c, const GF2EX& a, const GF2EXModulus& F);inline GF2EX SqrMod(const GF2EX& a, const GF2EXModulus& F) { GF2EX x; SqrMod(x, a, F); NTL_OPT_RETURN(GF2EX, x); }void PowerMod(GF2EX& h, const GF2EX& g, const ZZ& e, const GF2EXModulus& F);inline void PowerMod(GF2EX& h, const GF2EX& g, long e, const GF2EXModulus& F) { PowerMod(h, g, ZZ_expo(e), F); }inline GF2EX PowerMod(const GF2EX& g, const ZZ& e, const GF2EXModulus& F) { GF2EX x; PowerMod(x, g, e, F); NTL_OPT_RETURN(GF2EX, x); }inline GF2EX PowerMod(const GF2EX& g, long e, const GF2EXModulus& F) { GF2EX x; PowerMod(x, g, e, F); NTL_OPT_RETURN(GF2EX, x); }void PowerXMod(GF2EX& hh, const ZZ& e, const GF2EXModulus& F);inline void PowerXMod(GF2EX& h, long e, const GF2EXModulus& F) { PowerXMod(h, ZZ_expo(e), F); }inline GF2EX PowerXMod(const ZZ& e, const GF2EXModulus& F) { GF2EX x; PowerXMod(x, e, F); NTL_OPT_RETURN(GF2EX, x); }inline GF2EX PowerXMod(long e, const GF2EXModulus& F) { GF2EX x; PowerXMod(x, e, F); NTL_OPT_RETURN(GF2EX, x); }inline GF2EX operator%(const GF2EX& a, const GF2EXModulus& F) { GF2EX x; rem(x, a, F); NTL_OPT_RETURN(GF2EX, x); }inline GF2EX& operator%=(GF2EX& x, const GF2EXModulus& F) { rem(x, x, F); return x; }inline GF2EX operator/(const GF2EX& a, const GF2EXModulus& F) { GF2EX x; div(x, a, F); NTL_OPT_RETURN(GF2EX, x); }inline GF2EX& operator/=(GF2EX& x, const GF2EXModulus& F) { div(x, x, F); return x; }/***************************************************************** vectors of GF2EX's*****************************************************************/NTL_vector_decl(GF2EX,vec_GF2EX)NTL_eq_vector_decl(GF2EX,vec_GF2EX)NTL_io_vector_decl(GF2EX,vec_GF2EX)/******************************************************* Evaluation and related problems********************************************************/void BuildFromRoots(GF2EX& x, const vec_GF2E& a);inline GF2EX BuildFromRoots(const vec_GF2E& a) { GF2EX x; BuildFromRoots(x, a); NTL_OPT_RETURN(GF2EX, x); }// computes the polynomial (X-a[0]) ... (X-a[n-1]), where n = a.length()void eval(GF2E& b, const GF2EX& f, const GF2E& a);inline GF2E eval(const GF2EX& f, const GF2E& a) { GF2E x; eval(x, f, a); NTL_OPT_RETURN(GF2E, x); }// b = f(a)void eval(vec_GF2E& b, const GF2EX& f, const vec_GF2E& a);inline vec_GF2E eval(const GF2EX& f, const vec_GF2E& a) { vec_GF2E x; eval(x, f, a); NTL_OPT_RETURN(vec_GF2E, x); }// b[i] = f(a[i])inline void eval(GF2E& b, const GF2X& f, const GF2E& a) { conv(b, CompMod(f, rep(a), GF2E::modulus())); } inline GF2E eval(const GF2X& f, const GF2E& a) { GF2E x; eval(x, f, a); NTL_OPT_RETURN(GF2E, x); }// b = f(a)void interpolate(GF2EX& f, const vec_GF2E& a, const vec_GF2E& b);inline GF2EX interpolate(const vec_GF2E& a, const vec_GF2E& b) { GF2EX x; interpolate(x, a, b); NTL_OPT_RETURN(GF2EX, x); }// computes f such that f(a[i]) = b[i]/********************************************************** Modular Composition and Minimal Polynomials***********************************************************/// algorithms for computing g(h) mod fvoid CompMod(GF2EX& x, const GF2EX& g, const GF2EX& h, const GF2EXModulus& F);inline GF2EX CompMod(const GF2EX& g, const GF2EX& h, const GF2EXModulus& F) { GF2EX x; CompMod(x, g, h, F); NTL_OPT_RETURN(GF2EX, x); }// x = g(h) mod fvoid Comp2Mod(GF2EX& x1, GF2EX& x2, const GF2EX& g1, const GF2EX& g2, const GF2EX& h, const GF2EXModulus& F);// xi = gi(h) mod f (i=1,2)void Comp3Mod(GF2EX& x1, GF2EX& x2, GF2EX& x3, const GF2EX& g1, const GF2EX& g2, const GF2EX& g3, const GF2EX& h, const GF2EXModulus& F);// xi = gi(h) mod f (i=1..3)// The routine build (see below) which is implicitly called// by the various compose and UpdateMap routines builds a table// of polynomials. // If GF2EXArgBound > 0, then the table is limited in// size to approximamtely that many KB.// If GF2EXArgBound <= 0, then it is ignored, and space is allocated// so as to maximize speed.// Initially, GF2EXArgBound = 0.// If a single h is going to be used with many g's// then you should build a GF2EXArgument for h,// and then use the compose routine below.// build computes and stores h, h^2, ..., h^m mod f.// After this pre-computation, composing a polynomial of degree // roughly n with h takes n/m multiplies mod f, plus n^2// scalar multiplies.// Thus, increasing m increases the space requirement and the pre-computation// time, but reduces the composition time.// If GF2EXArgBound > 0, a table of size less than m may be built.struct GF2EXArgument { vec_GF2EX H;};extern long GF2EXArgBound;void build(GF2EXArgument& H, const GF2EX& h, const GF2EXModulus& F, long m);// m must be > 0, otherwise an error is raisedvoid CompMod(GF2EX& x, const GF2EX& g, const GF2EXArgument& H, const GF2EXModulus& F);inline GF2EX CompMod(const GF2EX& g, const GF2EXArgument& H, const GF2EXModulus& F) { GF2EX x; CompMod(x, g, H, F); NTL_OPT_RETURN(GF2EX, x); } void MinPolySeq(GF2EX& h, const vec_GF2E& a, long m);inline GF2EX MinPolySeq(const vec_GF2E& a, long m) { GF2EX x; MinPolySeq(x, a, m); NTL_OPT_RETURN(GF2EX, x); }void MinPolyMod(GF2EX& hh, const GF2EX& g, const GF2EXModulus& F);inline GF2EX MinPolyMod(const GF2EX& g, const GF2EXModulus& F) { GF2EX x; MinPolyMod(x, g, F); NTL_OPT_RETURN(GF2EX, x); }void MinPolyMod(GF2EX& hh, const GF2EX& g, const GF2EXModulus& F, long m);inline GF2EX MinPolyMod(const GF2EX& g, const GF2EXModulus& F, long m) { GF2EX x; MinPolyMod(x, g, F, m); NTL_OPT_RETURN(GF2EX, x); }void ProbMinPolyMod(GF2EX& hh, const GF2EX& g, const GF2EXModulus& F);inline GF2EX ProbMinPolyMod(const GF2EX& g, const GF2EXModulus& F) { GF2EX x; ProbMinPolyMod(x, g, F); NTL_OPT_RETURN(GF2EX, x); }void ProbMinPolyMod(GF2EX& hh, const GF2EX& g, const GF2EXModulus& F, long m);inline GF2EX ProbMinPolyMod(const GF2EX& g, const GF2EXModulus& F, long m) { GF2EX x; ProbMinPolyMod(x, g, F, m); NTL_OPT_RETURN(GF2EX, x); }void IrredPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F);inline GF2EX IrredPolyMod(const GF2EX& g, const GF2EXModulus& F) { GF2EX x; IrredPolyMod(x, g, F); NTL_OPT_RETURN(GF2EX, x); }void IrredPolyMod(GF2EX& h, const GF2EX& g, const GF2EXModulus& F, long m);inline GF2EX IrredPolyMod(const GF2EX& g, const GF2EXModulus& F, long m) { GF2EX x; IrredPolyMod(x, g, F, m); NTL_OPT_RETURN(GF2EX, x); }struct GF2EXTransMultiplier { GF2EX f0, fbi, b; long shamt, shamt_fbi, shamt_b;};void build(GF2EXTransMultiplier& B, const GF2EX& b, const GF2EXModulus& F);void TransMulMod(GF2EX& x, const GF2EX& a, const GF2EXTransMultiplier& B, const GF2EXModulus& F);void UpdateMap(vec_GF2E& x, const vec_GF2E& a, const GF2EXTransMultiplier& B, const GF2EXModulus& F);inline vec_GF2E UpdateMap(const vec_GF2E& a, const GF2EXTransMultiplier& B, const GF2EXModulus& F) { vec_GF2E x; UpdateMap(x, a, B, F); NTL_OPT_RETURN(vec_GF2E, x); }void ProjectPowers(vec_GF2E& x, const vec_GF2E& a, long k, const GF2EXArgument& H, const GF2EXModulus& F);inline vec_GF2E ProjectPowers(const vec_GF2E& a, long k, const GF2EXArgument& H, const GF2EXModulus& F) { vec_GF2E x; ProjectPowers(x, a, k, H, F); NTL_OPT_RETURN(vec_GF2E, x); }void ProjectPowers(vec_GF2E& x, const vec_GF2E& a, long k, const GF2EX& h, const GF2EXModulus& F);inline vec_GF2E ProjectPowers(const vec_GF2E& a, long k, const GF2EX& H, const GF2EXModulus& F) { vec_GF2E x; ProjectPowers(x, a, k, H, F); NTL_OPT_RETURN(vec_GF2E, x); }inline void project(GF2E& x, const vec_GF2E& a, const GF2EX& b) { InnerProduct(x, a, b.rep); }inline GF2E project(const vec_GF2E& a, const GF2EX& b) { GF2E x; InnerProduct(x, a, b.rep); NTL_OPT_RETURN(GF2E, x); }/********************************************************** Modular Composition and Minimal Polynomials in towers***********************************************************/// compositionvoid CompTower(GF2EX& x, const GF2X& g, const GF2EXArgument& A, const GF2EXModulus& F);inline GF2EX CompTower(const GF2X& g, const GF2EXArgument& A, const GF2EXModulus& F) { GF2EX x; CompTower(x, g, A, F); NTL_OPT_RETURN(GF2EX, x); }void CompTower(GF2EX& x, const GF2X& g, const GF2EX& h, const GF2EXModulus& F);inline GF2EX CompTower(const GF2X& g, const GF2EX& h, const GF2EXModulus& F) { GF2EX x; CompTower(x, g, h, F); NTL_OPT_RETURN(GF2EX, x); }// prob min polyvoid ProbMinPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F, long m);inline GF2X ProbMinPolyTower(const GF2EX& g, const GF2EXModulus& F, long m) { GF2X x; ProbMinPolyTower(x, g, F, m); NTL_OPT_RETURN(GF2X, x); }inline void ProbMinPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F) { ProbMinPolyTower(h, g, F, deg(F)*GF2E::degree()); }inline GF2X ProbMinPolyTower(const GF2EX& g, const GF2EXModulus& F) { GF2X x; ProbMinPolyTower(x, g, F); NTL_OPT_RETURN(GF2X, x); }// min polyvoid MinPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F, long m);inline GF2X MinPolyTower(const GF2EX& g, const GF2EXModulus& F, long m) { GF2X x; MinPolyTower(x, g, F, m); NTL_OPT_RETURN(GF2X, x); }inline void MinPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F) { MinPolyTower(h, g, F, deg(F)*GF2E::degree()); }inline GF2X MinPolyTower(const GF2EX& g, const GF2EXModulus& F) { GF2X x; MinPolyTower(x, g, F); NTL_OPT_RETURN(GF2X, x); }// irred polyvoid IrredPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F, long m);inline GF2X IrredPolyTower(const GF2EX& g, const GF2EXModulus& F, long m) { GF2X x; IrredPolyTower(x, g, F, m); NTL_OPT_RETURN(GF2X, x); }inline void IrredPolyTower(GF2X& h, const GF2EX& g, const GF2EXModulus& F) { IrredPolyTower(h, g, F, deg(F)*GF2E::degree()); }inline GF2X IrredPolyTower(const GF2EX& g, const GF2EXModulus& F) { GF2X x; IrredPolyTower(x, g, F); NTL_OPT_RETURN(GF2X, x); }/***************************************************************** Traces, norms, resultants******************************************************************/void TraceVec(vec_GF2E& S, const GF2EX& f);inline vec_GF2E TraceVec(const GF2EX& f) { vec_GF2E x; TraceVec(x, f); NTL_OPT_RETURN(vec_GF2E, x); }void TraceMod(GF2E& x, const GF2EX& a, const GF2EXModulus& F);inline GF2E TraceMod(const GF2EX& a, const GF2EXModulus& F) { GF2E x; TraceMod(x, a, F); NTL_OPT_RETURN(GF2E, x); }void TraceMod(GF2E& x, const GF2EX& a, const GF2EX& f);inline GF2E TraceMod(const GF2EX& a, const GF2EX& f) { GF2E x; TraceMod(x, a, f); NTL_OPT_RETURN(GF2E, x); }void NormMod(GF2E& x, const GF2EX& a, const GF2EX& f);inline GF2E NormMod(const GF2EX& a, const GF2EX& f) { GF2E x; NormMod(x, a, f); NTL_OPT_RETURN(GF2E, x); }void resultant(GF2E& rres, const GF2EX& a, const GF2EX& b);inline GF2E resultant(const GF2EX& a, const GF2EX& b) { GF2E x; resultant(x, a, b); NTL_OPT_RETURN(GF2E, x); }NTL_CLOSE_NNS #endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -