📄 gf2exfactoring.h
字号:
#ifndef NTL_GF2EXFactoring__H#define NTL_GF2EXFactoring__H#include <NTL/GF2EX.h>#include <NTL/pair_GF2EX_long.h>NTL_OPEN_NNS/************************************************************ factorization routines ************************************************************/void SquareFreeDecomp(vec_pair_GF2EX_long& u, const GF2EX& f);inline vec_pair_GF2EX_long SquareFreeDecomp(const GF2EX& f) { vec_pair_GF2EX_long x; SquareFreeDecomp(x, f); return x; }// Performs square-free decomposition.// f must be monic.// If f = prod_i g_i^i, then u is set to a lest of pairs (g_i, i).// The list is is increasing order of i, with trivial terms // (i.e., g_i = 1) deleted.void FindRoots(vec_GF2E& x, const GF2EX& f);inline vec_GF2E FindRoots(const GF2EX& f) { vec_GF2E x; FindRoots(x, f); return x; }// f is monic, and has deg(f) distinct roots.// returns the list of rootsvoid FindRoot(GF2E& root, const GF2EX& f);inline GF2E FindRoot(const GF2EX& f) { GF2E x; FindRoot(x, f); return x; }// finds a single root of f.// assumes that f is monic and splits into distinct linear factorsvoid SFBerlekamp(vec_GF2EX& factors, const GF2EX& f, long verbose=0);inline vec_GF2EX SFBerlekamp(const GF2EX& f, long verbose=0) { vec_GF2EX x; SFBerlekamp(x, f, verbose); return x; }// Assumes f is square-free and monic.// returns list of factors of f.// Uses "Berlekamp" appraoch.void berlekamp(vec_pair_GF2EX_long& factors, const GF2EX& f, long verbose=0);inline vec_pair_GF2EX_longberlekamp(const GF2EX& f, long verbose=0) { vec_pair_GF2EX_long x; berlekamp(x, f, verbose); return x; }// returns a list of factors, with multiplicities.// f must be monic.// Uses "Berlekamp" appraoch.extern long GF2EX_BlockingFactor;// Controls GCD blocking for DDF.void DDF(vec_pair_GF2EX_long& factors, const GF2EX& f, const GF2EX& h, long verbose=0);inline vec_pair_GF2EX_long DDF(const GF2EX& f, const GF2EX& h, long verbose=0) { vec_pair_GF2EX_long x; DDF(x, f, h, verbose); return x; }// Performs distinct-degree factorization.// Assumes f is monic and square-free, and h = X^p mod f// Obsolete: see NewDDF, below.extern long GF2EX_GCDTableSize; /* = 4 */// Controls GCD blocking for NewDDFextern char GF2EX_stem[]; // Determines filename stem for external storage in NewDDF.extern double GF2EXFileThresh; /* = 128 */// external files are used for baby/giant steps if size// of these tables exceeds GF2EXFileThresh KB.void NewDDF(vec_pair_GF2EX_long& factors, const GF2EX& f, const GF2EX& h, long verbose=0);inline vec_pair_GF2EX_long NewDDF(const GF2EX& f, const GF2EX& h, long verbose=0) { vec_pair_GF2EX_long x; NewDDF(x, f, h, verbose); return x; }// same as above, but uses baby-step/giant-step methodvoid EDF(vec_GF2EX& factors, const GF2EX& f, const GF2EX& b, long d, long verbose=0);inline vec_GF2EX EDF(const GF2EX& f, const GF2EX& b, long d, long verbose=0) { vec_GF2EX x; EDF(x, f, b, d, verbose); return x; }// Performs equal-degree factorization.// f is monic, square-free, and all irreducible factors have same degree.// b = X^p mod f.// d = degree of irreducible factors of f// Space for the trace-map computation can be controlled via ComposeBound.void RootEDF(vec_GF2EX& factors, const GF2EX& f, long verbose=0);inline vec_GF2EX RootEDF(const GF2EX& f, long verbose=0) { vec_GF2EX x; RootEDF(x, f, verbose); return x; }// EDF for d==1void SFCanZass(vec_GF2EX& factors, const GF2EX& f, long verbose=0);inline vec_GF2EX SFCanZass(const GF2EX& f, long verbose=0) { vec_GF2EX x; SFCanZass(x, f, verbose); return x; }// Assumes f is monic and square-free.// returns list of factors of f.// Uses "Cantor/Zassenhaus" approach.void CanZass(vec_pair_GF2EX_long& factors, const GF2EX& f, long verbose=0);inline vec_pair_GF2EX_long CanZass(const GF2EX& f, long verbose=0) { vec_pair_GF2EX_long x; CanZass(x, f, verbose); return x; }// returns a list of factors, with multiplicities.// f must be monic.// Uses "Cantor/Zassenhaus" approach.void mul(GF2EX& f, const vec_pair_GF2EX_long& v);inline GF2EX mul(const vec_pair_GF2EX_long& v) { GF2EX x; mul(x, v); return x; }// multiplies polynomials, with multiplicities/************************************************************* irreducible poly's: tests and constructions**************************************************************/long ProbIrredTest(const GF2EX& f, long iter=1);// performs a fast, probabilistic irreduciblity test// the test can err only if f is reducible, and the// error probability is bounded by p^{-iter}.long DetIrredTest(const GF2EX& f);// performs a recursive deterministic irreducibility test// fast in the worst-case (when input is irreducible).long IterIrredTest(const GF2EX& f);// performs an iterative deterministic irreducibility test,// based on DDF. Fast on average (when f has a small factor).void BuildIrred(GF2EX& f, long n);inline GF2EX BuildIrred_GF2EX(long n) { GF2EX x; BuildIrred(x, n); NTL_OPT_RETURN(GF2EX, x); }// Build a monic irreducible poly of degree n.void BuildRandomIrred(GF2EX& f, const GF2EX& g);inline GF2EX BuildRandomIrred(const GF2EX& g) { GF2EX x; BuildRandomIrred(x, g); NTL_OPT_RETURN(GF2EX, x); }// g is a monic irreducible polynomial.// constructs a random monic irreducible polynomial f of the same degree.long RecComputeDegree(const GF2EX& h, const GF2EXModulus& F);// f = F.f is assumed to be an "equal degree" polynomial// h = X^p mod f// the common degree of the irreducible factors of f is computed// This routine is useful in counting points on elliptic curveslong IterComputeDegree(const GF2EX& h, const GF2EXModulus& F);void TraceMap(GF2EX& w, const GF2EX& a, long d, const GF2EXModulus& F, const GF2EX& b);inline GF2EX TraceMap(const GF2EX& a, long d, const GF2EXModulus& F, const GF2EX& b) { GF2EX x; TraceMap(x, a, d, F, b); return x; }// w = a+a^q+...+^{q^{d-1}} mod f;// it is assumed that d >= 0, and b = X^q mod f, q a power of p// Space allocation can be controlled via ComposeBound (see <NTL/GF2EX.h>)void PowerCompose(GF2EX& w, const GF2EX& a, long d, const GF2EXModulus& F);inline GF2EX PowerCompose(const GF2EX& a, long d, const GF2EXModulus& F) { GF2EX x; PowerCompose(x, a, d, F); return x; }// w = X^{q^d} mod f;// it is assumed that d >= 0, and b = X^q mod f, q a power of p// Space allocation can be controlled via ComposeBound (see <NTL/GF2EX.h>)void PlainFrobeniusMap(GF2EX& h, const GF2EXModulus& F);void ComposeFrobeniusMap(GF2EX& y, const GF2EXModulus& F);void FrobeniusMap(GF2EX& h, const GF2EXModulus& F);inline GF2EX FrobeniusMap(const GF2EXModulus& F) { GF2EX x; FrobeniusMap(x, F); return x; }long UseComposeFrobenius(long d, long n);NTL_CLOSE_NNS#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -