📄 zz_pex.h
字号:
// computes x = a^{-1} % X^m // constant term must be invertibleinline ZZ_pEX operator/(const ZZ_pEX& a, const ZZ_pEX& b) { ZZ_pEX x; div(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }inline ZZ_pEX operator/(const ZZ_pEX& a, const ZZ_pE& b) { ZZ_pEX x; div(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }inline ZZ_pEX operator/(const ZZ_pEX& a, const ZZ_p& b) { ZZ_pEX x; div(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }inline ZZ_pEX operator/(const ZZ_pEX& a, long b) { ZZ_pEX x; div(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }inline ZZ_pEX& operator/=(ZZ_pEX& x, const ZZ_pEX& b) { div(x, x, b); return x; }inline ZZ_pEX& operator/=(ZZ_pEX& x, const ZZ_pE& b) { div(x, x, b); return x; }inline ZZ_pEX& operator/=(ZZ_pEX& x, const ZZ_p& b) { div(x, x, b); return x; }inline ZZ_pEX& operator/=(ZZ_pEX& x, long b) { div(x, x, b); return x; }inline ZZ_pEX operator%(const ZZ_pEX& a, const ZZ_pEX& b) { ZZ_pEX x; rem(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }inline ZZ_pEX& operator%=(ZZ_pEX& x, const ZZ_pEX& b) { rem(x, x, b); return x; }/*********************************************************** GCD's************************************************************/void GCD(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b);inline ZZ_pEX GCD(const ZZ_pEX& a, const ZZ_pEX& b) { ZZ_pEX x; GCD(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }// x = GCD(a, b), x is always monic (or zero if a==b==0).void XGCD(ZZ_pEX& d, ZZ_pEX& s, ZZ_pEX& t, const ZZ_pEX& a, const ZZ_pEX& b);// d = gcd(a,b), a s + b t = d /************************************************************* Modular Arithmetic without pre-conditioning**************************************************************/// arithmetic mod f.// all inputs and outputs are polynomials of degree less than deg(f).// ASSUMPTION: f is assumed monic, and deg(f) > 0.// NOTE: if you want to do many computations with a fixed f,// use the ZZ_pEXModulus data structure and associated routines below.void MulMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b, const ZZ_pEX& f);inline ZZ_pEX MulMod(const ZZ_pEX& a, const ZZ_pEX& b, const ZZ_pEX& f) { ZZ_pEX x; MulMod(x, a, b, f); NTL_OPT_RETURN(ZZ_pEX, x); }// x = (a * b) % fvoid SqrMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& f);inline ZZ_pEX SqrMod(const ZZ_pEX& a, const ZZ_pEX& f) { ZZ_pEX x; SqrMod(x, a, f); NTL_OPT_RETURN(ZZ_pEX, x); }// x = a^2 % fvoid MulByXMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& f);inline ZZ_pEX MulByXMod(const ZZ_pEX& a, const ZZ_pEX& f) { ZZ_pEX x; MulByXMod(x, a, f); NTL_OPT_RETURN(ZZ_pEX, x); }// x = (a * X) mod fvoid InvMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& f);inline ZZ_pEX InvMod(const ZZ_pEX& a, const ZZ_pEX& f) { ZZ_pEX x; InvMod(x, a, f); NTL_OPT_RETURN(ZZ_pEX, x); }// x = a^{-1} % f, error is a is not invertiblelong InvModStatus(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& f);// if (a, f) = 1, returns 0 and sets x = a^{-1} % f// otherwise, returns 1 and sets x = (a, f)/****************************************************************** Modular Arithmetic with Pre-conditioning*******************************************************************/// If you need to do a lot of arithmetic modulo a fixed f,// build ZZ_pEXModulus F for f. This pre-computes information about f// that speeds up the computation a great deal.class ZZ_pEXModulus {public: ZZ_pEXModulus(); ~ZZ_pEXModulus(); ZZ_pEXModulus(const ZZ_pEX& ff); ZZ_pEX f; // the modulus operator const ZZ_pEX& () const { return f; } const ZZ_pEX& val() const { return f; } long n; // deg(f) long method; ZZ_pEX h0; ZZ_pE hlc; ZZ_pEX f0; vec_ZZ_pE tracevec; // mutable}; inline long deg(const ZZ_pEXModulus& F) { return F.n; }void build(ZZ_pEXModulus& F, const ZZ_pEX& f);void rem(ZZ_pEX& r, const ZZ_pEX& a, const ZZ_pEXModulus& F); void DivRem(ZZ_pEX& q, ZZ_pEX& r, const ZZ_pEX& a, const ZZ_pEXModulus& F);void div(ZZ_pEX& q, const ZZ_pEX& a, const ZZ_pEXModulus& F);void MulMod(ZZ_pEX& c, const ZZ_pEX& a, const ZZ_pEX& b, const ZZ_pEXModulus& F);inline ZZ_pEX MulMod(const ZZ_pEX& a, const ZZ_pEX& b, const ZZ_pEXModulus& F) { ZZ_pEX x; MulMod(x, a, b, F); NTL_OPT_RETURN(ZZ_pEX, x); }void SqrMod(ZZ_pEX& c, const ZZ_pEX& a, const ZZ_pEXModulus& F);inline ZZ_pEX SqrMod(const ZZ_pEX& a, const ZZ_pEXModulus& F) { ZZ_pEX x; SqrMod(x, a, F); NTL_OPT_RETURN(ZZ_pEX, x); }void PowerMod(ZZ_pEX& h, const ZZ_pEX& g, const ZZ& e, const ZZ_pEXModulus& F);inline void PowerMod(ZZ_pEX& h, const ZZ_pEX& g, long e, const ZZ_pEXModulus& F) { PowerMod(h, g, ZZ_expo(e), F); }inline ZZ_pEX PowerMod(const ZZ_pEX& g, const ZZ& e, const ZZ_pEXModulus& F) { ZZ_pEX x; PowerMod(x, g, e, F); NTL_OPT_RETURN(ZZ_pEX, x); }inline ZZ_pEX PowerMod(const ZZ_pEX& g, long e, const ZZ_pEXModulus& F) { ZZ_pEX x; PowerMod(x, g, e, F); NTL_OPT_RETURN(ZZ_pEX, x); }void PowerXMod(ZZ_pEX& hh, const ZZ& e, const ZZ_pEXModulus& F);inline void PowerXMod(ZZ_pEX& h, long e, const ZZ_pEXModulus& F) { PowerXMod(h, ZZ_expo(e), F); }inline ZZ_pEX PowerXMod(const ZZ& e, const ZZ_pEXModulus& F) { ZZ_pEX x; PowerXMod(x, e, F); NTL_OPT_RETURN(ZZ_pEX, x); }inline ZZ_pEX PowerXMod(long e, const ZZ_pEXModulus& F) { ZZ_pEX x; PowerXMod(x, e, F); NTL_OPT_RETURN(ZZ_pEX, x); }inline ZZ_pEX operator%(const ZZ_pEX& a, const ZZ_pEXModulus& F) { ZZ_pEX x; rem(x, a, F); NTL_OPT_RETURN(ZZ_pEX, x); }inline ZZ_pEX& operator%=(ZZ_pEX& x, const ZZ_pEXModulus& F) { rem(x, x, F); return x; }inline ZZ_pEX operator/(const ZZ_pEX& a, const ZZ_pEXModulus& F) { ZZ_pEX x; div(x, a, F); NTL_OPT_RETURN(ZZ_pEX, x); }inline ZZ_pEX& operator/=(ZZ_pEX& x, const ZZ_pEXModulus& F) { div(x, x, F); return x; }/***************************************************************** vectors of ZZ_pEX's*****************************************************************/NTL_vector_decl(ZZ_pEX,vec_ZZ_pEX)NTL_eq_vector_decl(ZZ_pEX,vec_ZZ_pEX)NTL_io_vector_decl(ZZ_pEX,vec_ZZ_pEX)/******************************************************* Evaluation and related problems********************************************************/void BuildFromRoots(ZZ_pEX& x, const vec_ZZ_pE& a);inline ZZ_pEX BuildFromRoots(const vec_ZZ_pE& a) { ZZ_pEX x; BuildFromRoots(x, a); NTL_OPT_RETURN(ZZ_pEX, x); }// computes the polynomial (X-a[0]) ... (X-a[n-1]), where n = a.length()void eval(ZZ_pE& b, const ZZ_pEX& f, const ZZ_pE& a);inline ZZ_pE eval(const ZZ_pEX& f, const ZZ_pE& a) { ZZ_pE x; eval(x, f, a); NTL_OPT_RETURN(ZZ_pE, x); }// b = f(a)void eval(vec_ZZ_pE& b, const ZZ_pEX& f, const vec_ZZ_pE& a);inline vec_ZZ_pE eval(const ZZ_pEX& f, const vec_ZZ_pE& a) { vec_ZZ_pE x; eval(x, f, a); NTL_OPT_RETURN(vec_ZZ_pE, x); }// b[i] = f(a[i])inline void eval(ZZ_pE& b, const ZZ_pX& f, const ZZ_pE& a) { conv(b, CompMod(f, rep(a), ZZ_pE::modulus())); } inline ZZ_pE eval(const ZZ_pX& f, const ZZ_pE& a) { ZZ_pE x; eval(x, f, a); NTL_OPT_RETURN(ZZ_pE, x); }// b = f(a)void interpolate(ZZ_pEX& f, const vec_ZZ_pE& a, const vec_ZZ_pE& b);inline ZZ_pEX interpolate(const vec_ZZ_pE& a, const vec_ZZ_pE& b) { ZZ_pEX x; interpolate(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }// computes f such that f(a[i]) = b[i]/********************************************************** Modular Composition and Minimal Polynomials***********************************************************/void CompMod(ZZ_pEX& x, const ZZ_pEX& g, const ZZ_pEX& h, const ZZ_pEXModulus& F);inline ZZ_pEX CompMod(const ZZ_pEX& g, const ZZ_pEX& h, const ZZ_pEXModulus& F) { ZZ_pEX x; CompMod(x, g, h, F); NTL_OPT_RETURN(ZZ_pEX, x); }// x = g(h) mod fvoid Comp2Mod(ZZ_pEX& x1, ZZ_pEX& x2, const ZZ_pEX& g1, const ZZ_pEX& g2, const ZZ_pEX& h, const ZZ_pEXModulus& F);// xi = gi(h) mod f (i=1,2)void Comp3Mod(ZZ_pEX& x1, ZZ_pEX& x2, ZZ_pEX& x3, const ZZ_pEX& g1, const ZZ_pEX& g2, const ZZ_pEX& g3, const ZZ_pEX& h, const ZZ_pEXModulus& F);// xi = gi(h) mod f (i=1..3)// The routine build (see below) which is implicitly called// by the various compose and UpdateMap routines builds a table// of polynomials. // If ZZ_pEXArgBound > 0, then the table is limited in// size to approximamtely that many KB.// If ZZ_pEXArgBound <= 0, then it is ignored, and space is allocated// so as to maximize speed.// Initially, ZZ_pEXArgBound = 0.// If a single h is going to be used with many g's// then you should build a ZZ_pEXArgument for h,// and then use the compose routine below.// build computes and stores h, h^2, ..., h^m mod f.// After this pre-computation, composing a polynomial of degree // roughly n with h takes n/m multiplies mod f, plus n^2// scalar multiplies.// Thus, increasing m increases the space requirement and the pre-computation// time, but reduces the composition time.// If ZZ_pEXArgBound > 0, a table of size less than m may be built.struct ZZ_pEXArgument { vec_ZZ_pEX H;};extern long ZZ_pEXArgBound;void build(ZZ_pEXArgument& H, const ZZ_pEX& h, const ZZ_pEXModulus& F, long m);// m must be > 0, otherwise an error is raisedvoid CompMod(ZZ_pEX& x, const ZZ_pEX& g, const ZZ_pEXArgument& H, const ZZ_pEXModulus& F);inline ZZ_pEX CompMod(const ZZ_pEX& g, const ZZ_pEXArgument& H, const ZZ_pEXModulus& F) { ZZ_pEX x; CompMod(x, g, H, F); NTL_OPT_RETURN(ZZ_pEX, x); } void MinPolySeq(ZZ_pEX& h, const vec_ZZ_pE& a, long m);inline ZZ_pEX MinPolySeq(const vec_ZZ_pE& a, long m) { ZZ_pEX x; MinPolySeq(x, a, m); NTL_OPT_RETURN(ZZ_pEX, x); }void MinPolyMod(ZZ_pEX& hh, const ZZ_pEX& g, const ZZ_pEXModulus& F);inline ZZ_pEX MinPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F) { ZZ_pEX x; MinPolyMod(x, g, F); NTL_OPT_RETURN(ZZ_pEX, x); }void MinPolyMod(ZZ_pEX& hh, const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);inline ZZ_pEX MinPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m) { ZZ_pEX x; MinPolyMod(x, g, F, m); NTL_OPT_RETURN(ZZ_pEX, x); }void ProbMinPolyMod(ZZ_pEX& hh, const ZZ_pEX& g, const ZZ_pEXModulus& F);inline ZZ_pEX ProbMinPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F) { ZZ_pEX x; ProbMinPolyMod(x, g, F); NTL_OPT_RETURN(ZZ_pEX, x); }void ProbMinPolyMod(ZZ_pEX& hh, const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);inline ZZ_pEX ProbMinPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m) { ZZ_pEX x; ProbMinPolyMod(x, g, F, m); NTL_OPT_RETURN(ZZ_pEX, x); }void IrredPolyMod(ZZ_pEX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F);inline ZZ_pEX IrredPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F) { ZZ_pEX x; IrredPolyMod(x, g, F); NTL_OPT_RETURN(ZZ_pEX, x); }void IrredPolyMod(ZZ_pEX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);inline ZZ_pEX IrredPolyMod(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m) { ZZ_pEX x; IrredPolyMod(x, g, F, m); NTL_OPT_RETURN(ZZ_pEX, x); }struct ZZ_pEXTransMultiplier { ZZ_pEX f0, fbi, b; long shamt, shamt_fbi, shamt_b;};void build(ZZ_pEXTransMultiplier& B, const ZZ_pEX& b, const ZZ_pEXModulus& F);void TransMulMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEXTransMultiplier& B, const ZZ_pEXModulus& F);void UpdateMap(vec_ZZ_pE& x, const vec_ZZ_pE& a, const ZZ_pEXTransMultiplier& B, const ZZ_pEXModulus& F);inline vec_ZZ_pE UpdateMap(const vec_ZZ_pE& a, const ZZ_pEXTransMultiplier& B, const ZZ_pEXModulus& F) { vec_ZZ_pE x; UpdateMap(x, a, B, F); NTL_OPT_RETURN(vec_ZZ_pE, x); }void ProjectPowers(vec_ZZ_pE& x, const vec_ZZ_pE& a, long k, const ZZ_pEXArgument& H, const ZZ_pEXModulus& F);inline vec_ZZ_pE ProjectPowers(const vec_ZZ_pE& a, long k, const ZZ_pEXArgument& H, const ZZ_pEXModulus& F) { vec_ZZ_pE x; ProjectPowers(x, a, k, H, F); NTL_OPT_RETURN(vec_ZZ_pE, x); }void ProjectPowers(vec_ZZ_pE& x, const vec_ZZ_pE& a, long k, const ZZ_pEX& h, const ZZ_pEXModulus& F);inline vec_ZZ_pE ProjectPowers(const vec_ZZ_pE& a, long k, const ZZ_pEX& H, const ZZ_pEXModulus& F) { vec_ZZ_pE x; ProjectPowers(x, a, k, H, F); NTL_OPT_RETURN(vec_ZZ_pE, x); }inline void project(ZZ_pE& x, const vec_ZZ_pE& a, const ZZ_pEX& b) { InnerProduct(x, a, b.rep); }inline ZZ_pE project(const vec_ZZ_pE& a, const ZZ_pEX& b) { ZZ_pE x; InnerProduct(x, a, b.rep); NTL_OPT_RETURN(ZZ_pE, x); }/***************************************************************** modular composition and minimal polynonomials in towers******************************************************************/// compositionvoid CompTower(ZZ_pEX& x, const ZZ_pX& g, const ZZ_pEXArgument& A, const ZZ_pEXModulus& F);inline ZZ_pEX CompTower(const ZZ_pX& g, const ZZ_pEXArgument& A, const ZZ_pEXModulus& F) { ZZ_pEX x; CompTower(x, g, A, F); NTL_OPT_RETURN(ZZ_pEX, x); }void CompTower(ZZ_pEX& x, const ZZ_pX& g, const ZZ_pEX& h, const ZZ_pEXModulus& F);inline ZZ_pEX CompTower(const ZZ_pX& g, const ZZ_pEX& h, const ZZ_pEXModulus& F) { ZZ_pEX x; CompTower(x, g, h, F); NTL_OPT_RETURN(ZZ_pEX, x); }// prob min polyvoid ProbMinPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);inline ZZ_pX ProbMinPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m) { ZZ_pX x; ProbMinPolyTower(x, g, F, m); NTL_OPT_RETURN(ZZ_pX, x); }inline void ProbMinPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F) { ProbMinPolyTower(h, g, F, deg(F)*ZZ_pE::degree()); }inline ZZ_pX ProbMinPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F) { ZZ_pX x; ProbMinPolyTower(x, g, F); NTL_OPT_RETURN(ZZ_pX, x); }// min polyvoid MinPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);inline ZZ_pX MinPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m) { ZZ_pX x; MinPolyTower(x, g, F, m); NTL_OPT_RETURN(ZZ_pX, x); }inline void MinPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F) { MinPolyTower(h, g, F, deg(F)*ZZ_pE::degree()); }inline ZZ_pX MinPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F) { ZZ_pX x; MinPolyTower(x, g, F); NTL_OPT_RETURN(ZZ_pX, x); }// irred polyvoid IrredPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F, long m);inline ZZ_pX IrredPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F, long m) { ZZ_pX x; IrredPolyTower(x, g, F, m); NTL_OPT_RETURN(ZZ_pX, x); }inline void IrredPolyTower(ZZ_pX& h, const ZZ_pEX& g, const ZZ_pEXModulus& F) { IrredPolyTower(h, g, F, deg(F)*ZZ_pE::degree()); }inline ZZ_pX IrredPolyTower(const ZZ_pEX& g, const ZZ_pEXModulus& F) { ZZ_pX x; IrredPolyTower(x, g, F); NTL_OPT_RETURN(ZZ_pX, x); }/***************************************************************** Traces, norms, resultants******************************************************************/void TraceVec(vec_ZZ_pE& S, const ZZ_pEX& f);inline vec_ZZ_pE TraceVec(const ZZ_pEX& f) { vec_ZZ_pE x; TraceVec(x, f); NTL_OPT_RETURN(vec_ZZ_pE, x); }void TraceMod(ZZ_pE& x, const ZZ_pEX& a, const ZZ_pEXModulus& F);inline ZZ_pE TraceMod(const ZZ_pEX& a, const ZZ_pEXModulus& F) { ZZ_pE x; TraceMod(x, a, F); NTL_OPT_RETURN(ZZ_pE, x); }void TraceMod(ZZ_pE& x, const ZZ_pEX& a, const ZZ_pEX& f);inline ZZ_pE TraceMod(const ZZ_pEX& a, const ZZ_pEX& f) { ZZ_pE x; TraceMod(x, a, f); NTL_OPT_RETURN(ZZ_pE, x); }void NormMod(ZZ_pE& x, const ZZ_pEX& a, const ZZ_pEX& f);inline ZZ_pE NormMod(const ZZ_pEX& a, const ZZ_pEX& f) { ZZ_pE x; NormMod(x, a, f); NTL_OPT_RETURN(ZZ_pE, x); }void resultant(ZZ_pE& rres, const ZZ_pEX& a, const ZZ_pEX& b);inline ZZ_pE resultant(const ZZ_pEX& a, const ZZ_pEX& b) { ZZ_pE x; resultant(x, a, b); NTL_OPT_RETURN(ZZ_pE, x); }NTL_CLOSE_NNS#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -