⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zz_pxfactoring.h

📁 密码大家Shoup写的数论算法c语言实现
💻 H
字号:
#ifndef NTL_ZZ_pXFactoring__H#define NTL_ZZ_pXFactoring__H#include <NTL/ZZ.h>#include <NTL/ZZ_p.h>#include <NTL/ZZ_pX.h>#include <NTL/pair_ZZ_pX_long.h>NTL_OPEN_NNS/************************************************************                      factorization routines ************************************************************/void SquareFreeDecomp(vec_pair_ZZ_pX_long& u, const ZZ_pX& f);inline vec_pair_ZZ_pX_long SquareFreeDecomp(const ZZ_pX& f)   { vec_pair_ZZ_pX_long x; SquareFreeDecomp(x, f); return x; }// Performs square-free decomposition.// f must be monic.// If f = prod_i g_i^i, then u is set to a lest of pairs (g_i, i).// The list is is increasing order of i, with trivial terms // (i.e., g_i = 1) deleted.void FindRoots(vec_ZZ_p& x, const ZZ_pX& f);inline vec_ZZ_p FindRoots(const ZZ_pX& f)   { vec_ZZ_p x; FindRoots(x, f); return x; }// f is monic, and has deg(f) distinct roots.// returns the list of rootsvoid FindRoot(ZZ_p& root, const ZZ_pX& f);inline ZZ_p FindRoot(const ZZ_pX& f)   { ZZ_p x; FindRoot(x, f); return x; }// finds a single root of f.// assumes that f is monic and splits into distinct linear factorsvoid SFBerlekamp(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);inline vec_ZZ_pX SFBerlekamp(const ZZ_pX& f, long verbose=0)   { vec_ZZ_pX x; SFBerlekamp(x, f, verbose); return x; }// Assumes f is square-free and monic.// returns list of factors of f.// Uses "Berlekamp" appraoch.void berlekamp(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, long verbose=0);inline vec_pair_ZZ_pX_long berlekamp(const ZZ_pX& f, long verbose=0)   { vec_pair_ZZ_pX_long x; berlekamp(x, f, verbose); return x; }// returns a list of factors, with multiplicities.// f must be monic.// Uses "Berlekamp" appraoch.extern long ZZ_pX_BlockingFactor;// Controls GCD blocking for DDF.void DDF(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, const ZZ_pX& h,         long verbose=0);inline vec_pair_ZZ_pX_long DDF(const ZZ_pX& f, const ZZ_pX& h,         long verbose=0)   { vec_pair_ZZ_pX_long x; DDF(x, f, h, verbose); return x; }// Performs distinct-degree factorization.// Assumes f is monic and square-free,  and h  = X^p mod f// Obsolete: see NewDDF, below.extern long ZZ_pX_GCDTableSize; /* = 4 */// Controls GCD blocking for NewDDFextern char ZZ_pX_stem[]; // Determines filename stem for external storage in NewDDF.extern double ZZ_pXFileThresh; /* = 128 */// external files are used for baby/giant steps if size// of these tables exceeds ZZ_pXFileThresh KB.void NewDDF(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, const ZZ_pX& h,         long verbose=0);inline vec_pair_ZZ_pX_long NewDDF(const ZZ_pX& f, const ZZ_pX& h,         long verbose=0)   { vec_pair_ZZ_pX_long x; NewDDF(x, f, h, verbose); return x; }// same as above, but uses baby-step/giant-step methodvoid EDF(vec_ZZ_pX& factors, const ZZ_pX& f, const ZZ_pX& b,         long d, long verbose=0);inline vec_ZZ_pX EDF(const ZZ_pX& f, const ZZ_pX& b,         long d, long verbose=0)   { vec_ZZ_pX x; EDF(x, f, b, d, verbose); return x; }// Performs equal-degree factorization.// f is monic, square-free, and all irreducible factors have same degree.// b = X^p mod f.// d = degree of irreducible factors of f// Space for the trace-map computation can be controlled via ComposeBound.void RootEDF(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);inline vec_ZZ_pX RootEDF(const ZZ_pX& f, long verbose=0)   { vec_ZZ_pX x; RootEDF(x, f, verbose); return x; }// EDF for d==1void SFCanZass(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);inline vec_ZZ_pX SFCanZass(const ZZ_pX& f, long verbose=0)   { vec_ZZ_pX x; SFCanZass(x, f, verbose); return x; }// Assumes f is monic and square-free.// returns list of factors of f.// Uses "Cantor/Zassenhaus" approach.void CanZass(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f,       long verbose=0);inline vec_pair_ZZ_pX_long CanZass(const ZZ_pX& f, long verbose=0)   { vec_pair_ZZ_pX_long x; CanZass(x, f, verbose); return x; }// returns a list of factors, with multiplicities.// f must be monic.// Uses "Cantor/Zassenhaus" approach.void mul(ZZ_pX& f, const vec_pair_ZZ_pX_long& v);inline ZZ_pX mul(const vec_pair_ZZ_pX_long& v)   { ZZ_pX x; mul(x, v); return x; }// multiplies polynomials, with multiplicities/*************************************************************            irreducible poly's:  tests and constructions**************************************************************/long ProbIrredTest(const ZZ_pX& f, long iter=1);// performs a fast, probabilistic irreduciblity test// the test can err only if f is reducible, and the// error probability is bounded by p^{-iter}.long DetIrredTest(const ZZ_pX& f);// performs a recursive deterministic irreducibility test// fast in the worst-case (when input is irreducible).long IterIrredTest(const ZZ_pX& f);// performs an iterative deterministic irreducibility test,// based on DDF.  Fast on average (when f has a small factor).void BuildIrred(ZZ_pX& f, long n);inline ZZ_pX BuildIrred_ZZ_pX(long n)   { ZZ_pX x; BuildIrred(x, n); NTL_OPT_RETURN(ZZ_pX, x); }// Build a monic irreducible poly of degree n.void BuildRandomIrred(ZZ_pX& f, const ZZ_pX& g);inline ZZ_pX BuildRandomIrred(const ZZ_pX& g)   { ZZ_pX x; BuildRandomIrred(x, g); NTL_OPT_RETURN(ZZ_pX, x); }// g is a monic irreducible polynomial.// constructs a random monic irreducible polynomial f of the same degree.long ComputeDegree(const ZZ_pX& h, const ZZ_pXModulus& F);// f = F.f is assumed to be an "equal degree" polynomial// h = X^p mod f// the common degree of the irreducible factors of f is computed// This routine is useful in counting points on elliptic curveslong ProbComputeDegree(const ZZ_pX& h, const ZZ_pXModulus& F);// same as above, but uses a slightly faster probabilistic algorithm// the return value may be 0 or may be too big, but for large p// (relative to n), this happens with very low probability.void TraceMap(ZZ_pX& w, const ZZ_pX& a, long d, const ZZ_pXModulus& F,              const ZZ_pX& b);inline ZZ_pX TraceMap(const ZZ_pX& a, long d, const ZZ_pXModulus& F,              const ZZ_pX& b)   { ZZ_pX x; TraceMap(x, a, d, F, b); return x; }// w = a+a^q+...+^{q^{d-1}} mod f;// it is assumed that d >= 0, and b = X^q mod f, q a power of p// Space allocation can be controlled via ComposeBound (see <NTL/ZZ_pX.h>)void PowerCompose(ZZ_pX& w, const ZZ_pX& a, long d, const ZZ_pXModulus& F);inline ZZ_pX PowerCompose(const ZZ_pX& a, long d, const ZZ_pXModulus& F)   { ZZ_pX x; PowerCompose(x, a, d, F); return x; }// w = X^{q^d} mod f;// it is assumed that d >= 0, and b = X^q mod f, q a power of p// Space allocation can be controlled via ComposeBound (see <NTL/ZZ_pX.h>)NTL_CLOSE_NNS#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -