📄 lzz_pxfactoring.txt
字号:
/**************************************************************************\MODULE: zz_pXFactoringSUMMARY:Routines are provided for factorization of polynomials over zz_p, aswell as routines for related problems such as testing irreducibilityand constructing irreducible polynomials of given degree.\**************************************************************************/#include "zz_pX.h"#include "pair_zz_pX_long.h"void SquareFreeDecomp(vec_pair_zz_pX_long& u, const zz_pX& f);vec_pair_zz_pX_long SquareFreeDecomp(const zz_pX& f);// Performs square-free decomposition. f must be monic. If f =// prod_i g_i^i, then u is set to a lest of pairs (g_i, i). The list// is is increasing order of i, with trivial terms (i.e., g_i = 1)// deleted.void FindRoots(vec_zz_p& x, const zz_pX& f);vec_zz_p FindRoots(const zz_pX& f);// f is monic, and has deg(f) distinct roots. returns the list of// rootsvoid FindRoot(zz_p& root, const zz_pX& f);zz_p FindRoot(const zz_pX& f);// finds a single root of f. assumes that f is monic and splits into// distinct linear factorsvoid SFBerlekamp(vec_zz_pX& factors, const zz_pX& f, long verbose=0);vec_zz_pX SFBerlekamp(const zz_pX& f, long verbose=0);// Assumes f is square-free and monic. returns list of factors of f.// Uses "Berlekamp" approach, as described in detail in [Shoup,// J. Symbolic Comp. 20:363-397, 1995].void berlekamp(vec_pair_zz_pX_long& factors, const zz_pX& f, long verbose=0);vec_pair_zz_pX_long berlekamp(const zz_pX& f, long verbose=0);// returns a list of factors, with multiplicities. f must be monic.// Calls SFBerlekamp.void NewDDF(vec_pair_zz_pX_long& factors, const zz_pX& f, const zz_pX& h, long verbose=0);vec_pair_zz_pX_long NewDDF(const zz_pX& f, const zz_pX& h, long verbose=0);// This computes a distinct-degree factorization. The input must be// monic and square-free. factors is set to a list of pairs (g, d),// where g is the product of all irreducible factors of f of degree d.// Only nontrivial pairs (i.e., g != 1) are included. The polynomial// h is assumed to be equal to X^p mod f. This routine implements the// baby step/giant step algorithm of [Kaltofen and Shoup, STOC 1995],// further described in [Shoup, J. Symbolic Comp. 20:363-397, 1995].void EDF(vec_zz_pX& factors, const zz_pX& f, const zz_pX& h, long d, long verbose=0);vec_zz_pX EDF(const zz_pX& f, const zz_pX& h, long d, long verbose=0);// Performs equal-degree factorization. f is monic, square-free, and// all irreducible factors have same degree. h = X^p mod f. d =// degree of irreducible factors of f. This routine implements the// algorithm of [von zur Gathen and Shoup, Computational Complexity// 2:187-224, 1992]void RootEDF(vec_zz_pX& factors, const zz_pX& f, long verbose=0);vec_zz_pX RootEDF(const zz_pX& f, long verbose=0);// EDF for d==1void SFCanZass(vec_zz_pX& factors, const zz_pX& f, long verbose=0);vec_zz_pX SFCanZass(const zz_pX& f, long verbose=0);// Assumes f is monic and square-free. returns list of factors of f.// Uses "Cantor/Zassenhaus" approach, using the routines NewDDF and// EDF above.void CanZass(vec_pair_zz_pX_long& factors, const zz_pX& f, long verbose=0);vec_pair_zz_pX_long CanZass(const zz_pX& f, long verbose=0);// returns a list of factors, with multiplicities. f must be monic.// Calls SquareFreeDecomp and SFCanZass.void mul(zz_pX& f, const vec_pair_zz_pX_long& v);zz_pX mul(const vec_pair_zz_pX_long& v);// multiplies polynomials, with multiplicities/**************************************************************************\ Irreducible Polynomials\**************************************************************************/long ProbIrredTest(const zz_pX& f, long iter=1);// performs a fast, probabilistic irreduciblity test. The test can// err only if f is reducible, and the error probability is bounded by// p^{-iter}. This implements an algorithm from [Shoup, J. Symbolic// Comp. 17:371-391, 1994].long DetIrredTest(const zz_pX& f);// performs a recursive deterministic irreducibility test. Fast in// the worst-case (when input is irreducible). This implements an// algorithm from [Shoup, J. Symbolic Comp. 17:371-391, 1994].long IterIrredTest(const zz_pX& f);// performs an iterative deterministic irreducibility test, based on// DDF. Fast on average (when f has a small factor).void BuildIrred(zz_pX& f, long n);zz_pX BuildIrred_zz_pX(long n);// Build a monic irreducible poly of degree n.void BuildRandomIrred(zz_pX& f, const zz_pX& g);zz_pX BuildRandomIrred(const zz_pX& g);// g is a monic irreducible polynomial. Constructs a random monic// irreducible polynomial f of the same degree.long ComputeDegree(const zz_pX& h, const zz_pXModulus& F);// f is assumed to be an "equal degree" polynomial. h = X^p mod f.// The common degree of the irreducible factors of f is computed This// routine is useful in counting points on elliptic curveslong ProbComputeDegree(const zz_pX& h, const zz_pXModulus& F);// same as above, but uses a slightly faster probabilistic algorithm.// The return value may be 0 or may be too big, but for large p// (relative to n), this happens with very low probability.void TraceMap(zz_pX& w, const zz_pX& a, long d, const zz_pXModulus& F, const zz_pX& h);zz_pX TraceMap(const zz_pX& a, long d, const zz_pXModulus& F, const zz_pX& h);// w = a+a^q+...+^{q^{d-1}} mod f; it is assumed that d >= 0, and h =// X^q mod f, q a power of p. This routine implements an algorithm// from [von zur Gathen and Shoup, Computational Complexity 2:187-224,// 1992]void PowerCompose(zz_pX& w, const zz_pX& h, long d, const zz_pXModulus& F);zz_pX PowerCompose(const zz_pX& h, long d, const zz_pXModulus& F);// w = X^{q^d} mod f; it is assumed that d >= 0, and h = X^q mod f, q// a power of p. This routine implements an algorithm from [von zur// Gathen and Shoup, Computational Complexity 2:187-224, 1992]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -