📄 zz_pxfactoring.txt
字号:
/**************************************************************************\MODULE: ZZ_pXFactoringSUMMARY:Routines are provided for factorization of polynomials over ZZ_p, aswell as routines for related problems such as testing irreducibilityand constructing irreducible polynomials of given degree.\**************************************************************************/#include <NTL/ZZ_pX.h>#include <NTL/pair_ZZ_pX_long.h>void SquareFreeDecomp(vec_pair_ZZ_pX_long& u, const ZZ_pX& f);vec_pair_ZZ_pX_long SquareFreeDecomp(const ZZ_pX& f);// Performs square-free decomposition. f must be monic. If f =// prod_i g_i^i, then u is set to a lest of pairs (g_i, i). The list// is is increasing order of i, with trivial terms (i.e., g_i = 1)// deleted.void FindRoots(vec_ZZ_p& x, const ZZ_pX& f);vec_ZZ_p FindRoots(const ZZ_pX& f);// f is monic, and has deg(f) distinct roots. returns the list of// rootsvoid FindRoot(ZZ_p& root, const ZZ_pX& f);ZZ_p FindRoot(const ZZ_pX& f);// finds a single root of f. assumes that f is monic and splits into// distinct linear factorsvoid SFBerlekamp(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);vec_ZZ_pX SFBerlekamp(const ZZ_pX& f, long verbose=0);// Assumes f is square-free and monic. returns list of factors of f.// Uses "Berlekamp" approach, as described in detail in [Shoup,// J. Symbolic Comp. 20:363-397, 1995].void berlekamp(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, long verbose=0);vec_pair_ZZ_pX_long berlekamp(const ZZ_pX& f, long verbose=0);// returns a list of factors, with multiplicities. f must be monic.// Calls SFBerlekamp.void NewDDF(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, const ZZ_pX& h, long verbose=0);vec_pair_ZZ_pX_long NewDDF(const ZZ_pX& f, const ZZ_pX& h, long verbose=0);// This computes a distinct-degree factorization. The input must be// monic and square-free. factors is set to a list of pairs (g, d),// where g is the product of all irreducible factors of f of degree d.// Only nontrivial pairs (i.e., g != 1) are included. The polynomial// h is assumed to be equal to X^p mod f. // This routine implements the baby step/giant step algorithm // of [Kaltofen and Shoup, STOC 1995].// further described in [Shoup, J. Symbolic Comp. 20:363-397, 1995].// NOTE: When factoring "large" polynomials,// this routine uses external files to store some intermediate// results, which are removed if the routine terminates normally.// These files are stored in the current directory under names of the// form ddf-*-baby-* and ddf-*-giant-*. // The definition of "large" is controlled by the variable extern double ZZ_pXFileThresh// which can be set by the user. If the sizes of the tables// exceeds ZZ_pXFileThresh KB, external files are used.// Initial value is 256.void EDF(vec_ZZ_pX& factors, const ZZ_pX& f, const ZZ_pX& h, long d, long verbose=0);vec_ZZ_pX EDF(const ZZ_pX& f, const ZZ_pX& h, long d, long verbose=0);// Performs equal-degree factorization. f is monic, square-free, and// all irreducible factors have same degree. h = X^p mod f. d =// degree of irreducible factors of f. This routine implements the// algorithm of [von zur Gathen and Shoup, Computational Complexity// 2:187-224, 1992].void RootEDF(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);vec_ZZ_pX RootEDF(const ZZ_pX& f, long verbose=0);// EDF for d==1void SFCanZass(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);vec_ZZ_pX SFCanZass(const ZZ_pX& f, long verbose=0);// Assumes f is monic and square-free. returns list of factors of f.// Uses "Cantor/Zassenhaus" approach, using the routines NewDDF and// EDF above.void CanZass(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, long verbose=0);vec_pair_ZZ_pX_long CanZass(const ZZ_pX& f, long verbose=0);// returns a list of factors, with multiplicities. f must be monic.// Calls SquareFreeDecomp and SFCanZass.// NOTE: these routines use modular composition. The space// used for the required tables can be controlled by the variable// ZZ_pXArgBound (see ZZ_pX.txt).void mul(ZZ_pX& f, const vec_pair_ZZ_pX_long& v);ZZ_pX mul(const vec_pair_ZZ_pX_long& v);// multiplies polynomials, with multiplicities/**************************************************************************\ Irreducible Polynomials\**************************************************************************/long ProbIrredTest(const ZZ_pX& f, long iter=1);// performs a fast, probabilistic irreduciblity test. The test can// err only if f is reducible, and the error probability is bounded by// p^{-iter}. This implements an algorithm from [Shoup, J. Symbolic// Comp. 17:371-391, 1994].long DetIrredTest(const ZZ_pX& f);// performs a recursive deterministic irreducibility test. Fast in// the worst-case (when input is irreducible). This implements an// algorithm from [Shoup, J. Symbolic Comp. 17:371-391, 1994].long IterIrredTest(const ZZ_pX& f);// performs an iterative deterministic irreducibility test, based on// DDF. Fast on average (when f has a small factor).void BuildIrred(ZZ_pX& f, long n);ZZ_pX BuildIrred_ZZ_pX(long n);// Build a monic irreducible poly of degree n.void BuildRandomIrred(ZZ_pX& f, const ZZ_pX& g);ZZ_pX BuildRandomIrred(const ZZ_pX& g);// g is a monic irreducible polynomial. Constructs a random monic// irreducible polynomial f of the same degree.long ComputeDegree(const ZZ_pX& h, const ZZ_pXModulus& F);// f is assumed to be an "equal degree" polynomial; h = X^p mod f.// The common degree of the irreducible factors of f is computed This// routine is useful in counting points on elliptic curveslong ProbComputeDegree(const ZZ_pX& h, const ZZ_pXModulus& F);// Same as above, but uses a slightly faster probabilistic algorithm.// The return value may be 0 or may be too big, but for large p// (relative to n), this happens with very low probability.void TraceMap(ZZ_pX& w, const ZZ_pX& a, long d, const ZZ_pXModulus& F, const ZZ_pX& h);ZZ_pX TraceMap(const ZZ_pX& a, long d, const ZZ_pXModulus& F, const ZZ_pX& h);// w = a+a^q+...+^{q^{d-1}} mod f; it is assumed that d >= 0, and h =// X^q mod f, q a power of p. This routine implements an algorithm// from [von zur Gathen and Shoup, Computational Complexity 2:187-224,// 1992].void PowerCompose(ZZ_pX& w, const ZZ_pX& h, long d, const ZZ_pXModulus& F);ZZ_pX PowerCompose(const ZZ_pX& h, long d, const ZZ_pXModulus& F);// w = X^{q^d} mod f; it is assumed that d >= 0, and h = X^q mod f, q// a power of p. This routine implements an algorithm from [von zur// Gathen and Shoup, Computational Complexity 2:187-224, 1992]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -