⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tour-ex5.html

📁 密码大家Shoup写的数论算法c语言实现
💻 HTML
字号:
<html><head><title>A Tour of NTL: Examples: Extension Rings and Fields </title></head><body bgcolor="#fff9e6"><center><a href="tour-ex4.html"><img src="arrow1.gif" alt="[Previous]" align=bottom></a> <a href="tour-examples.html"><img src="arrow2.gif" alt="[Up]" align=bottom></a> <a href="tour-ex6.html"> <img src="arrow3.gif" alt="[Next]" align=bottom></a></center><h1> <p align=center>A Tour of NTL: Examples: Extension Rings and Fields</p></h1><p> <hr> <p>NTL also supports extension rings and fields over finite fields,and polynomial arithmetic over such extensions.Here is a little program that illustrates this.<p><pre>#include &lt;NTL/ZZ_pXFactoring.h&gt;#include &lt;NTL/ZZ_pEX.h&gt;int main(){   ZZ_p::init(to_ZZ(17)); // define GF(17)   ZZ_pX P;   BuildIrred(P, 10); // generate an irreducible polynomial P                      // of degree 10 over GF(17)   ZZ_pE::init(P); // define GF(17^10)   ZZ_pEX f, g, h;  // declare polynomials over GF(17^10)   random(f, 20);  // f is a random, monic polynomial of degree 20   SetCoeff(f, 20);   random(h, 20); // h is a random polynomial of degree less than 20   g = MinPolyMod(h, f); // compute the minimum polynomial of h modulo f   if (g == 0) Error("oops (1)"); // check that g != 0   if (CompMod(g, h, f) != 0) // check that g(h) = 0 mod f      Error("oops (2)");}</pre><p>This example illustrates building extension rings over <tt>ZZ_p</tt>.One can also use <tt>zz_p</tt> and <tt>GF2</tt> as base classes;the syntax is exactly the same.<p>See <a href="ZZ_pE.txt"><tt>ZZ_pE.txt</tt></a> for the basics of the extensionring <tt>ZZ_pE</tt> over <tt>ZZ_p</tt>.Also see <a href="ZZ_pEX.txt"><tt>ZZ_pEX.txt</tt></a> for polynomialarithmetic over <tt>ZZ_pE</tt>, and <a href="ZZ_pEXFactoring.txt"><tt>ZZ_pEXFactoring.txt</tt></a> for factoringroutines over <tt>ZZ_pE</tt>.See <a href="vec_ZZ_pE.txt"><tt>vec_ZZ_pE.txt</tt></a> for vectors over <tt>ZZ_pE</tt>,and <a href="mat_ZZ_pE.txt"><tt>mat_ZZ_pE.txt</tt></a> for matrices over <tt>ZZ_pE</tt>.<p>See <a href="lzz_pE.txt"><tt>lzz_pE.txt</tt></a> for the basics of the extensionring <tt>zz_pE</tt> over <tt>zz_p</tt>.Also see <a href="lzz_pEX.txt"><tt>lzz_pEX.txt</tt></a> for polynomialarithmetic over <tt>zz_pE</tt>, and <a href="lzz_pEXFactoring.txt"><tt>lzz_pEXFactoring.txt</tt></a> for factoringroutines over <tt>zz_pE</tt>.See <a href="vec_lzz_pE.txt"><tt>vec_lzz_pE.txt</tt></a> for vectors over <tt>zz_pE</tt>,and <a href="mat_lzz_pE.txt"><tt>mat_lzz_pE.txt</tt></a> for matrices over <tt>zz_pE</tt>.<p>See <a href="GF2E.txt"><tt>GF2E.txt</tt></a> for the basics of the extensionring <tt>GF2E</tt> over <tt>GF2</tt>.Also see <a href="GF2EX.txt"><tt>GF2EX.txt</tt></a> for polynomialarithmetic over <tt>GF2E</tt>, and <a href="GF2EXFactoring.txt"><tt>GF2EXFactoring.txt</tt></a> for factoringroutines over <tt>GF2E</tt>.See <a href="vec_GF2E.txt"><tt>vec_GF2E.txt</tt></a> for vectors over <tt>GF2E</tt>,and <a href="mat_GF2E.txt"><tt>mat_GF2E.txt</tt></a> for matrices over <tt>GF2E</tt>.<center><a href="tour-ex4.html"><img src="arrow1.gif" alt="[Previous]" align=bottom></a> <a href="tour-examples.html"><img src="arrow2.gif" alt="[Up]" align=bottom></a> <a href="tour-ex6.html"> <img src="arrow3.gif" alt="[Next]" align=bottom></a></center></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -