📄 gf2xfactoring.txt
字号:
/**************************************************************************\MODULE: GF2XFactoringSUMMARY:Routines are provided for factorization in F_2[X], as well as routinesfor related problems such as testing irreducibility and constructingirreducible polynomials of given degree.\**************************************************************************/#include <NTL/GF2X.h>#include <NTL/pair_GF2X_long.h>void SquareFreeDecomp(vec_pair_GF2X_long& u, const GF2X& f);vec_pair_GF2X_long SquareFreeDecomp(const GF2X& f);// Performs square-free decomposition. f must be monic. If f =// prod_i g_i^i, then u is set to a list of pairs (g_i, i). The list// is is increasing order of i, with trivial terms (i.e., g_i = 1)// deleted.void DDF(vec_pair_GF2X_long& factors, const GF2X& f, long verbose=0);vec_pair_GF2X_long DDF(const GF2X& f, long verbose=0);// This computes a distinct-degree factorization. The input must be// monic and square-free. factors is set to a list of pairs (g, d),// where g is the product of all irreducible factors of f of degree d.// Only nontrivial pairs (i.e., g != 1) are included.void EDF(vec_GF2X& factors, const GF2X& f, long d, long verbose=0);vec_GF2X EDF(const GF2X& f, long d, long verbose=0);// Performs equal-degree factorization. f is monic, square-free, and// all irreducible factors have same degree. d = degree of// irreducible factors of fvoid SFCanZass(vec_GF2X& factors, const GF2X& f, long verbose=0);vec_GF2X SFCanZass(const GF2X& f, long verbose=0);// Assumes f is monic and square-free. returns list of factors of f.void CanZass(vec_pair_GF2X_long& factors, const GF2X& f, long verbose=0);vec_pair_GF2X_long CanZass(const GF2X& f, long verbose=0);// returns a list of factors, with multiplicities. f must be monic.// Calls SquareFreeDecomp and SFCanZass.void mul(GF2X& f, const vec_pair_GF2X_long& v);GF2X mul(const vec_pair_GF2X_long& v);// multiplies polynomials, with multiplicities/**************************************************************************\ Irreducible Polynomials\**************************************************************************/long IterIrredTest(const GF2X& f);// performs an iterative deterministic irreducibility test, based on// DDF. Fast on average (when f has a small factor).void BuildSparseIrred(GF2X& f, long n);GF2X BuildSparseIrred_GF2X(long n);// Builds a monic irreducible polynomial of degree n.// If there is an irreducible trinomial X^n + X^k + 1,// then the one with minimal k is chosen.// Otherwise, if there is an irreducible pentanomial // X^n + X^k3 + X^k2 + x^k1 + 1, then the one with minimal// k3 is chosen (minimizing first k2 and then k1).// Otherwise, if there is niether an irreducible trinomial// or pentanomial, the routine result from BuildIrred (see below)// is chosen---this is probably only of academic interest,// since it a reasonable, but unproved, conjecture that they// exist for every n > 1.// For n <= 2048, the polynomial is constructed// by table lookup in a pre-computed table.// The GF2XModulus data structure and routines (and indirectly GF2E) // are optimized to deal with the output from BuildSparseIrred.void BuildIrred(GF2X& f, long n);GF2X BuildIrred_GF2X(long n);// Build a monic irreducible poly of degree n. The polynomial// constructed is "canonical" in the sense that it is of the form// f=X^n + g, where the bits of g are the those of the smallest// non-negative integer that make f irreducible. // The GF2XModulus data structure and routines (and indirectly GF2E) // are optimized to deal with the output from BuildIrred.// Note that the output from BuildSparseIrred will generally yield// a "better" representation (in terms of efficiency) for// GF(2^n) than the output from BuildIrred.void BuildRandomIrred(GF2X& f, const GF2X& g);GF2X BuildRandomIrred(const GF2X& g);// g is a monic irreducible polynomial. Constructs a random monic// irreducible polynomial f of the same degree.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -