📄 mat_lzz_pe.txt
字号:
/**************************************************************************\MODULE: mat_zz_pESUMMARY:Defines the class mat_zz_pE.\**************************************************************************/#include <NTL/matrix.h>#include <NTL/vec_vec_lzz_pE.h>NTL_matrix_decl(zz_pE,vec_zz_pE,vec_vec_zz_pE,mat_zz_pE)NTL_io_matrix_decl(zz_pE,vec_zz_pE,vec_vec_zz_pE,mat_zz_pE)NTL_eq_matrix_decl(zz_pE,vec_zz_pE,vec_vec_zz_pE,mat_zz_pE)void add(mat_zz_pE& X, const mat_zz_pE& A, const mat_zz_pE& B); // X = A + Bvoid sub(mat_zz_pE& X, const mat_zz_pE& A, const mat_zz_pE& B); // X = A - Bvoid negate(mat_zz_pE& X, const mat_zz_pE& A); // X = - Avoid mul(mat_zz_pE& X, const mat_zz_pE& A, const mat_zz_pE& B); // X = A * Bvoid mul(vec_zz_pE& x, const mat_zz_pE& A, const vec_zz_pE& b); // x = A * bvoid mul(vec_zz_pE& x, const vec_zz_pE& a, const mat_zz_pE& B); // x = a * Bvoid mul(mat_zz_pE& X, const mat_zz_pE& A, const zz_pE& b);void mul(mat_zz_pE& X, const mat_zz_pE& A, const zz_p& b);void mul(mat_zz_pE& X, const mat_zz_pE& A, long b);// X = A * bvoid mul(mat_zz_pE& X, const zz_pE& a, const mat_zz_pE& B);void mul(mat_zz_pE& X, const zz_p& a, const mat_zz_pE& B);void mul(mat_zz_pE& X, long a, const mat_zz_pE& B);// X = a * Bvoid determinant(zz_pE& d, const mat_zz_pE& A);zz_pE determinant(const mat_zz_pE& a); // d = determinant(A)void transpose(mat_zz_pE& X, const mat_zz_pE& A);mat_zz_pE transpose(const mat_zz_pE& A);// X = transpose of Avoid solve(zz_pE& d, vec_zz_pE& X, const mat_zz_pE& A, const vec_zz_pE& b);// A is an n x n matrix, b is a length n vector. Computes d =// determinant(A). If d != 0, solves x*A = b.void inv(zz_pE& d, mat_zz_pE& X, const mat_zz_pE& A);// A is an n x n matrix. Computes d = determinant(A). If d != 0,// computes X = A^{-1}.void sqr(mat_zz_pE& X, const mat_zz_pE& A);mat_zz_pE sqr(const mat_zz_pE& A);// X = A*A void inv(mat_zz_pE& X, const mat_zz_pE& A);mat_zz_pE inv(const mat_zz_pE& A);// X = A^{-1}; error is raised if A is singularvoid power(mat_zz_pE& X, const mat_zz_pE& A, const ZZ& e);mat_zz_pE power(const mat_zz_pE& A, const ZZ& e);void power(mat_zz_pE& X, const mat_zz_pE& A, long e);mat_zz_pE power(const mat_zz_pE& A, long e);// X = A^e; e may be negative (in which case A must be nonsingular).void ident(mat_zz_pE& X, long n);mat_zz_pE ident_mat_zz_pE(long n);// X = n x n identity matrixlong IsIdent(const mat_zz_pE& A, long n);// test if A is the n x n identity matrixvoid diag(mat_zz_pE& X, long n, const zz_pE& d);mat_zz_pE diag(long n, const zz_pE& d);// X = n x n diagonal matrix with d on diagonallong IsDiag(const mat_zz_pE& A, long n, const zz_pE& d);// test if X is an n x n diagonal matrix with d on diagonallong gauss(mat_zz_pE& M);long gauss(mat_zz_pE& M, long w);// Performs unitary row operations so as to bring M into row echelon// form. If the optional argument w is supplied, stops when first w// columns are in echelon form. The return value is the rank (or the// rank of the first w columns).void image(mat_zz_pE& X, const mat_zz_pE& A);// The rows of X are computed as basis of A's row space. X is is row// echelon formvoid kernel(mat_zz_pE& X, const mat_zz_pE& A);// Computes a basis for the kernel of the map x -> x*A. where x is a// row vector.// miscellaneous:void clear(mat_zz_pE& a);// x = 0 (dimension unchanged)long IsZero(const mat_zz_pE& a);// test if a is the zero matrix (any dimension)// operator notation:mat_zz_pE operator+(const mat_zz_pE& a, const mat_zz_pE& b);mat_zz_pE operator-(const mat_zz_pE& a, const mat_zz_pE& b);mat_zz_pE operator*(const mat_zz_pE& a, const mat_zz_pE& b);mat_zz_pE operator-(const mat_zz_pE& a);// matrix/scalar multiplication:mat_zz_pE operator*(const mat_zz_pE& a, const zz_pE& b);mat_zz_pE operator*(const mat_zz_pE& a, const zz_p& b);mat_zz_pE operator*(const mat_zz_pE& a, long b);mat_zz_pE operator*(const zz_pE& a, const mat_zz_pE& b);mat_zz_pE operator*(const zz_p& a, const mat_zz_pE& b);mat_zz_pE operator*(long a, const mat_zz_pE& b);// matrix/vector multiplication:vec_zz_pE operator*(const mat_zz_pE& a, const vec_zz_pE& b);vec_zz_pE operator*(const vec_zz_pE& a, const mat_zz_pE& b);// assignment operator notation:mat_zz_pE& operator+=(mat_zz_pE& x, const mat_zz_pE& a);mat_zz_pE& operator-=(mat_zz_pE& x, const mat_zz_pE& a);mat_zz_pE& operator*=(mat_zz_pE& x, const mat_zz_pE& a);mat_zz_pE& operator*=(mat_zz_pE& x, const zz_pE& a);mat_zz_pE& operator*=(mat_zz_pE& x, const zz_p& a);mat_zz_pE& operator*=(mat_zz_pE& x, long a);vec_zz_pE& operator*=(vec_zz_pE& x, const mat_zz_pE& a);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -