📄 zz_pex.txt
字号:
/**************************************************************************\MODULE: ZZ_pEXSUMMARY:The class ZZ_pEX represents polynomials over ZZ_pE,and so can be used, for example, for arithmentic in GF(p^n)[X].However, except where mathematically necessary (e.g., GCD computations),ZZ_pE need not be a field.\**************************************************************************/#include <NTL/ZZ_pE.h>#include <NTL/vec_ZZ_pE.h>class ZZ_pEX {public: ZZ_pEX(); // initial value 0 ZZ_pEX(const ZZ_pEX& a); // copy ZZ_pEX& operator=(const ZZ_pEX& a); // assignment ZZ_pEX& operator=(const ZZ_pE& a); ZZ_pEX& operator=(const ZZ_p& a); ZZ_pEX& operator=(long a); ~ZZ_pEX(); // destructor ZZ_pEX(long i, const ZZ_pE& c); // initilaize to X^i*c ZZ_pEX(long i, const ZZ_p& c); ZZ_pEX(long i, long c); };/**************************************************************************\ Comparison\**************************************************************************/long operator==(const ZZ_pEX& a, const ZZ_pEX& b);long operator!=(const ZZ_pEX& a, const ZZ_pEX& b);long IsZero(const ZZ_pEX& a); // test for 0long IsOne(const ZZ_pEX& a); // test for 1// PROMOTIONS: ==, != promote {long,ZZ_p,ZZ_pE} to ZZ_pEX on (a, b)./**************************************************************************\ Addition\**************************************************************************/// operator notation:ZZ_pEX operator+(const ZZ_pEX& a, const ZZ_pEX& b);ZZ_pEX operator-(const ZZ_pEX& a, const ZZ_pEX& b);ZZ_pEX operator-(const ZZ_pEX& a);ZZ_pEX& operator+=(ZZ_pEX& x, const ZZ_pEX& a);ZZ_pEX& operator+=(ZZ_pEX& x, const ZZ_pE& a);ZZ_pEX& operator+=(ZZ_pEX& x, const ZZ_p& a);ZZ_pEX& operator+=(ZZ_pEX& x, long a);ZZ_pEX& operator++(ZZ_pEX& x); // prefixvoid operator++(ZZ_pEX& x, int); // postfixZZ_pEX& operator-=(ZZ_pEX& x, const ZZ_pEX& a);ZZ_pEX& operator-=(ZZ_pEX& x, const ZZ_pE& a);ZZ_pEX& operator-=(ZZ_pEX& x, const ZZ_p& a);ZZ_pEX& operator-=(ZZ_pEX& x, long a);ZZ_pEX& operator--(ZZ_pEX& x); // prefixvoid operator--(ZZ_pEX& x, int); // postfix// procedural versions:void add(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b); // x = a + bvoid sub(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b); // x = a - b void negate(ZZ_pEX& x, const ZZ_pEX& a); // x = - a // PROMOTIONS: +, -, add, sub promote {long,ZZ_p,ZZ_pE} to ZZ_pEX on (a, b)./**************************************************************************\ Multiplication\**************************************************************************/// operator notation:ZZ_pEX operator*(const ZZ_pEX& a, const ZZ_pEX& b);ZZ_pEX& operator*=(ZZ_pEX& x, const ZZ_pEX& a);ZZ_pEX& operator*=(ZZ_pEX& x, const ZZ_pE& a);ZZ_pEX& operator*=(ZZ_pEX& x, const ZZ_p& a);ZZ_pEX& operator*=(ZZ_pEX& x, long a);// procedural versions:void mul(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b); // x = a * bvoid sqr(ZZ_pEX& x, const ZZ_pEX& a); // x = a^2ZZ_pEX sqr(const ZZ_pEX& a); // PROMOTIONS: *, mul promote {long,ZZ_p,ZZ_pE} to ZZ_pEX on (a, b).void power(ZZ_pEX& x, const ZZ_pEX& a, long e); // x = a^e (e >= 0)ZZ_pEX power(const ZZ_pEX& a, long e);/**************************************************************************\ Shift OperationsLeftShift by n means multiplication by X^nRightShift by n means division by X^nA negative shift amount reverses the direction of the shift.\**************************************************************************/// operator notation:ZZ_pEX operator<<(const ZZ_pEX& a, long n);ZZ_pEX operator>>(const ZZ_pEX& a, long n);ZZ_pEX& operator<<=(ZZ_pEX& x, long n);ZZ_pEX& operator>>=(ZZ_pEX& x, long n);// procedural versions:void LeftShift(ZZ_pEX& x, const ZZ_pEX& a, long n); ZZ_pEX LeftShift(const ZZ_pEX& a, long n);void RightShift(ZZ_pEX& x, const ZZ_pEX& a, long n); ZZ_pEX RightShift(const ZZ_pEX& a, long n); /**************************************************************************\ Division\**************************************************************************/// operator notation:ZZ_pEX operator/(const ZZ_pEX& a, const ZZ_pEX& b);ZZ_pEX operator/(const ZZ_pEX& a, const ZZ_pE& b);ZZ_pEX operator/(const ZZ_pEX& a, const ZZ_p& b);ZZ_pEX operator/(const ZZ_pEX& a, long b);ZZ_pEX operator%(const ZZ_pEX& a, const ZZ_pEX& b);ZZ_pEX& operator/=(ZZ_pEX& x, const ZZ_pEX& a);ZZ_pEX& operator/=(ZZ_pEX& x, const ZZ_pE& a);ZZ_pEX& operator/=(ZZ_pEX& x, const ZZ_p& a);ZZ_pEX& operator/=(ZZ_pEX& x, long a);ZZ_pEX& operator%=(ZZ_pEX& x, const ZZ_pEX& a);// procedural versions:void DivRem(ZZ_pEX& q, ZZ_pEX& r, const ZZ_pEX& a, const ZZ_pEX& b);// q = a/b, r = a%bvoid div(ZZ_pEX& q, const ZZ_pEX& a, const ZZ_pEX& b);void div(ZZ_pEX& q, const ZZ_pEX& a, const ZZ_pE& b);void div(ZZ_pEX& q, const ZZ_pEX& a, const ZZ_p& b);void div(ZZ_pEX& q, const ZZ_pEX& a, long b);// q = a/bvoid rem(ZZ_pEX& r, const ZZ_pEX& a, const ZZ_pEX& b);// r = a%blong divide(ZZ_pEX& q, const ZZ_pEX& a, const ZZ_pEX& b);// if b | a, sets q = a/b and returns 1; otherwise returns 0long divide(const ZZ_pEX& a, const ZZ_pEX& b);// if b | a, sets q = a/b and returns 1; otherwise returns 0/**************************************************************************\ GCD'sThese routines are intended for use when ZZ_pE is a field.\**************************************************************************/void GCD(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b);ZZ_pEX GCD(const ZZ_pEX& a, const ZZ_pEX& b); // x = GCD(a, b), x is always monic (or zero if a==b==0).void XGCD(ZZ_pEX& d, ZZ_pEX& s, ZZ_pEX& t, const ZZ_pEX& a, const ZZ_pEX& b);// d = gcd(a,b), a s + b t = d /**************************************************************************\ Input/OutputI/O format: [a_0 a_1 ... a_n],represents the polynomial a_0 + a_1*X + ... + a_n*X^n.On output, all coefficients will be polynomials of degree < ZZ_pE::degree() anda_n not zero (the zero polynomial is [ ]). On input, the coefficientsare arbitrary polynomials which are reduced modulo ZZ_pE::modulus(), and leading zeros stripped.\**************************************************************************/istream& operator>>(istream& s, ZZ_pEX& x);ostream& operator<<(ostream& s, const ZZ_pEX& a);/**************************************************************************\ Some utility routines\**************************************************************************/long deg(const ZZ_pEX& a); // return deg(a); deg(0) == -1.const ZZ_pE& coeff(const ZZ_pEX& a, long i);// returns a read-only reference to the coefficient of X^i, or zero if// i not in rangeconst ZZ_pE& LeadCoeff(const ZZ_pEX& a);// read-only reference to leading term of a, or zero if a == 0const ZZ_pE& ConstTerm(const ZZ_pEX& a);// read-only reference to constant term of a, or zero if a == 0void SetCoeff(ZZ_pEX& x, long i, const ZZ_pE& a);void SetCoeff(ZZ_pEX& x, long i, const ZZ_p& a);void SetCoeff(ZZ_pEX& x, long i, long a);// makes coefficient of X^i equal to a; error is raised if i < 0void SetCoeff(ZZ_pEX& x, long i);// makes coefficient of X^i equal to 1; error is raised if i < 0void SetX(ZZ_pEX& x); // x is set to the monomial Xlong IsX(const ZZ_pEX& a); // test if x = Xvoid diff(ZZ_pEX& x, const ZZ_pEX& a); // x = derivative of aZZ_pEX diff(const ZZ_pEX& a); void MakeMonic(ZZ_pEX& x); // if x != 0 makes x into its monic associate; LeadCoeff(x) must be// invertible in this casevoid reverse(ZZ_pEX& x, const ZZ_pEX& a, long hi);ZZ_pEX reverse(const ZZ_pEX& a, long hi);void reverse(ZZ_pEX& x, const ZZ_pEX& a);ZZ_pEX reverse(const ZZ_pEX& a);// x = reverse of a[0]..a[hi] (hi >= -1);// hi defaults to deg(a) in second versionvoid VectorCopy(vec_ZZ_pE& x, const ZZ_pEX& a, long n);vec_ZZ_pE VectorCopy(const ZZ_pEX& a, long n);// x = copy of coefficient vector of a of length exactly n.// input is truncated or padded with zeroes as appropriate./**************************************************************************\ Random Polynomials\**************************************************************************/void random(ZZ_pEX& x, long n);ZZ_pEX random_ZZ_pEX(long n);// x = random polynomial of degree < n /**************************************************************************\ Polynomial Evaluation and related problems\**************************************************************************/void BuildFromRoots(ZZ_pEX& x, const vec_ZZ_pE& a);ZZ_pEX BuildFromRoots(const vec_ZZ_pE& a);// computes the polynomial (X-a[0]) ... (X-a[n-1]), where n = a.length()void eval(ZZ_pE& b, const ZZ_pEX& f, const ZZ_pE& a);ZZ_pE eval(const ZZ_pEX& f, const ZZ_pE& a);// b = f(a)void eval(ZZ_pE& b, const ZZ_pX& f, const ZZ_pE& a);ZZ_pE eval(const ZZ_pEX& f, const ZZ_pE& a);// b = f(a); uses ModComp algorithm for ZZ_pXvoid eval(vec_ZZ_pE& b, const ZZ_pEX& f, const vec_ZZ_pE& a);vec_ZZ_pE eval(const ZZ_pEX& f, const vec_ZZ_pE& a);// b.SetLength(a.length()); b[i] = f(a[i]) for 0 <= i < a.length()void interpolate(ZZ_pEX& f, const vec_ZZ_pE& a, const vec_ZZ_pE& b);ZZ_pEX interpolate(const vec_ZZ_pE& a, const vec_ZZ_pE& b);// interpolates the polynomial f satisfying f(a[i]) = b[i]. /**************************************************************************\ Arithmetic mod X^nRequired: n >= 0; otherwise, an error is raised.\**************************************************************************/void trunc(ZZ_pEX& x, const ZZ_pEX& a, long n); // x = a % X^nZZ_pEX trunc(const ZZ_pEX& a, long n); void MulTrunc(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b, long n);ZZ_pEX MulTrunc(const ZZ_pEX& a, const ZZ_pEX& b, long n);// x = a * b % X^nvoid SqrTrunc(ZZ_pEX& x, const ZZ_pEX& a, long n);ZZ_pEX SqrTrunc(const ZZ_pEX& a, long n);// x = a^2 % X^nvoid InvTrunc(ZZ_pEX& x, const ZZ_pEX& a, long n);ZZ_pEX InvTrunc(ZZ_pEX& x, const ZZ_pEX& a, long n);// computes x = a^{-1} % X^m. Must have ConstTerm(a) invertible./**************************************************************************\ Modular Arithmetic (without pre-conditioning)Arithmetic mod f.All inputs and outputs are polynomials of degree less than deg(f), anddeg(f) > 0.NOTE: if you want to do many computations with a fixed f, use theZZ_pEXModulus data structure and associated routines below for betterperformance.\**************************************************************************/void MulMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b, const ZZ_pEX& f);ZZ_pEX MulMod(const ZZ_pEX& a, const ZZ_pEX& b, const ZZ_pEX& f);// x = (a * b) % fvoid SqrMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& f);ZZ_pEX SqrMod(const ZZ_pEX& a, const ZZ_pEX& f);// x = a^2 % fvoid MulByXMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& f);ZZ_pEX MulByXMod(const ZZ_pEX& a, const ZZ_pEX& f);// x = (a * X) mod fvoid InvMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& f);ZZ_pEX InvMod(const ZZ_pEX& a, const ZZ_pEX& f);// x = a^{-1} % f, error is a is not invertiblelong InvModStatus(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& f);// if (a, f) = 1, returns 0 and sets x = a^{-1} % f; otherwise,// returns 1 and sets x = (a, f)/**************************************************************************\ Modular Arithmetic with Pre-ConditioningIf you need to do a lot of arithmetic modulo a fixed f, buildZZ_pEXModulus F for f. This pre-computes information about f thatspeeds up subsequent computations.As an example, the following routine the product modulo f of a vectorof polynomials.#include <NTL/ZZ_pEX.h>void product(ZZ_pEX& x, const vec_ZZ_pEX& v, const ZZ_pEX& f){ ZZ_pEXModulus F(f); ZZ_pEX res; res = 1; long i; for (i = 0; i < v.length(); i++) MulMod(res, res, v[i], F); x = res;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -