📄 pcx.txt
字号:
The following is culled from a USENET posting by tici@uni-paderborn.de.
Technical Reference Manual
Including Information For:
Publisher's Paintbrush~
PC Paintbrush~ Plus
PC Paintbrush
FRIEZE Graphics~
ZSoft Corporation
450 Franklin Rd. Suite 100
Marietta, GA 30067
(404) 428-0008
Copyright 1988 ZSoft Corporation
Table of Contents
Introduction
Image File (.PCX) Format
Decoding the .PCX File Format
Palette Information Description
PC Paintbrush Bitmap Font Format
Sample "C" Routines
FRIEZE Technical Information
Pre-7.00 FRIEZE Specifications
Pre-7.00 FRIEZE Function Calls
Pre-7.00 FRIEZE Error Codes
7.00 and later FRIEZE Specifications
7.00 and later FRIEZE Function Calls
7.00 and later FRIEZE Error Codes
The .PCX Programmer's Toolkit
Introduction
This booklet was designed to aid developers and users in understanding
the technical aspects of the .PCX file format and the use of FRIEZE.
Any comments, questions or suggestions about this booklet should be
sent to:
ZSoft Corporation Technical Support Department
ATTN: Technical Reference Manual
450 Franklin Rd. Suite 100
Marietta, GA 30067
USA
IMAGE FILE (.PCX) FORMAT
The information in this section will be useful if you want to write a
program to read or write PCX files (images). If you want to write a
special case program for one particular image format you should be
able to produce something that runs twice as fast as "Load from..." in
PC Paintbrush. Image files used by PC Paintbrush product family and
FRIEZE (those with a .PCX extension) begin with a 128 byte header.
Usually you can ignore this header, since your images will all have
the same resolution. If you want to process different resolutions or
colors, you will need to interpret the header correctly. The
remainder of the image file consists of encoded graphic data. The
encoding method is a simple byte oriented run-length technique. We
reserve the right to change this method to improve efficiency. When
more than one color plane is stored in the file, each line of the
image is stored by color plane (generally ordered red, green, blue,
intensity), as shown below.
Scan line 0: RRR...
GGG...
BBB...
III...
Scan line 1: RRR...
GGG...
BBB...
III...
(etc.)
The encoding method is:
FOR each byte, X, read from the file
IF the top two bits of X are 1's then
count = 6 lowest bits of X
data = next byte following X
ELSE
count = 1
data = X
Since the overhead this technique requires is, on average, 25% of the
non-repeating data and is at least offset whenever bytes are repeated,
the file storage savings are usually considerable. The format of the
file header is shown below.
ZSoft .PCX FILE HEADER FORMAT
Byte Item Size Description/Comments
0 Manufacturer 1 Constant Flag 10 = ZSoft .PCX
1 Version 1 Version information:
0 = Version 2.5
2 = Version 2.8 w/palette information
3 = Version 2.8 w/o palette information
5 = Version 3.0
2 Encoding 1 1 = .PCX run length encoding
3 Bits per pixel 1 Number of bits/pixel per plane
4 Window 8 Picture Dimensions
(Xmin, Ymin) - (Xmax - Ymax)
in pixels, inclusive
12 HRes 2 Horizontal Resolution of creating device
14 VRes 2 Vertical Resolution of creating device
16 Colormap 48 Color palette setting, see text
64 Reserved 1
65 NPlanes 1 Number of color planes
66 Bytes per Line 2 Number of bytes per scan line per
color plane (always even for .PCX files)
68 Palette Info 2 How to interpret palette - 1 = color/BW,
2 = grayscale
70 Filler 58 blank to fill out 128 byte header
All variables of size 2 are integers.
Decoding .PCX Files
First, find the pixel dimensions of the image by calculating [XSIZE =
Xmax - Xmin + 1] and [YSIZE = Ymax - Ymin + 1]. Then calculate how
many bytes are required to hold one complete uncompressed scan line:
TotalBytes = NPlanes * BytesPerLine Note that since there are always
an integral number of bytes, there will probably be unused data at the
end of each scan line. TotalBytes shows how much storage must be
available to decode each scan line, including any blank area on the
right side of the image. You can now begin decoding the first scan
line - read the first byte of data from the file. If the top two bits
are set, the remaining six bits in the byte show how many times to
duplicate the next byte in the file. If the top bits are not set, the
first byte is the data itself, with a count of one. Continue decoding
the rest of the line. Keep a running subtotal of how many bytes are
moved and duplicated into the output buffer. When the subtotal equals
TotalBytes, the scan line is complete. There will always be a
decoding break at the end of each scan line. But there will not be a
decoding break at the end of each plane within each scan line. When
the scan line is completed, there may be extra blank data at the end
of each plane within the scan line. Use the XSIZE and YSIM values to
find where the valid image data is. If the data is multi-plane
BytesPerLine shows where each plane ends within the scan line.
Continue decoding the remainder of the scan lines. There may be extra
scan lines at the bottom of the image, to round to 8 or 16 scan lines.
Palette Information Description
EGA/VGA 16 Color Palette Information
The palette information is stored in one of two different formats. In
standard RGB format (IBM EGA, IBM VGA) the data is stored as 16
triples. Each triple is a 3 byte quantity of Red, Green, Blue values.
The values can range from 0-255 so some interpre tation into the base
card format is necessary. On an IBM EGA, for example, there are 4
possible levels of RGB for each color. Since 256/4 = 64, the
following is a list of the settings and levels:
Setting Level
0-63 0
64-127 1
128-192 2
193-254 3
VGA 256 Color Palette Information
ZSoft has recently added the capability to store palettes containing
more than 16 colors in the .PCX image file. The 256 color palette is
formatted and treated the same as the 16 color palette, except that it
is substantially longer. The palette (number of colors x 3 bytes in
length) is appended to the end of the .PCX file, and is preceded by a
12 decimal. To determine the VGA BIOS palette you need only divide
the values read in the palette by 4. To access a 256 color palette:
First, check the version number in the header, if it contains a 5
there is a palette. Second, read to the end of the file and count
back 769 bytes. The value you find should be a 12 decimal, showing
the presence of a 256 color palette. CGA Color Palette Information
For a standard IBM CGA board, the palette settings are a bit more
complex. Only the first byte of the triple is used. The first triple
has a valid first byte which represents the background color. To find
the background, take the (unsigned) byte value and divide by 16. This
will give a result between 0-15, hence the background color. The
second triple has a valid first byte, which represents the foreground
palette. PC Paintbrush supports 8 possible CGA palettes, so when the
foreground setting i ded between 0 and 255, there are 8 ranges of
numbers and the divisor is 32.
CGA Color Map
Header Byte #16
Background color is determined in the upper four bits.
Header Byte #19
Only upper 3 bits are used, lower 5 bits are ignored. The first three
bits that are used are ordered C, P, I. These bits are interpreted as
follows:
c: color burst enable - 0 = color; 1 = monochrome
p: palette - 0 = yellow; 1 = white
i: intensity - 0 = dim; 1 = bright
PC Paintbrush Bitmap Character Format
The bitmap character fonts are stored in a particularly simple format.
The format of these characters is as follows:
Header (2 bytes)
font width db 0a0h + character width (in dots)
font height db character height (in dots)
Character Widths (256 bytes)
char widths db 256 dup(each char's width +1)
Character Images
(remainder of the file)
The characters are stored in ASCII order and as many as 256 may be
provided. Each character is left justified in the character block,
all characters take up the same number of bytes. Bytes are organized
as N strings, where each string is one scan line of the character.
See figure 2. For example, each character in a 5x7 font requires 7
bytes. A 9x14 font uses 28 bytes per character (stored two bytes per
scan line in 14 sets of 2 byte packets). Custom fonts may be any size
up to the current maximum of 10K bytes allowed for a font fil e.
Sample "C" Routines
The following is a simple set of C subroutines to read data from a .PCX file.
/* This procedure reads one encoded block from the image file and
stores a count and data byte. Result:
0 = valid data stored
EOF = out of data in file */
encget(pbyt, pcnt, fid)
int *pbyt; /* where to place data */
int *pcnt; /* where to place count */
FILE *fid; /* image file handle */
{
int i;
*pcnt = 1; /* safety play */
if(EOF == (i = getc(fid))) return(EOF);
if(0xc0 == (0xc0 & i)) {
*pcnt = 0x3f&i;
if(EOF == (i=getc(fid)))
return(EOF);
}
*pbyt = i;
return(0);
}
/* Here's a program fragment using encget. This reads an entire file
and stores it in a (large) buffer, pointed to by the variable "bufr".
"fp" is the file pointer for the image */
while (EOF != encget(&chr, &cnt, fp))
for (i = 0; i ~ *bufr++ = chr;
The following is a set of C subroutines to write data to a .PCX file.
/* This subroutine encodes one scanline and writes it to a file */
encLine(inBuff, inLen, fp)
unsigned char *inBuff; /* pointer to scanline data */
int inLen; /* length of raw scanline in bytes */
FILE *fp; /* file to be written to */
{ /* returns number of bytes written into outBuff, 0 if failed */
unsigned char this, last;
int srcIndex, i;
register int total;
register unsigned char runCount; /* max single runlength is 63 */
total = 0;
last = *(inBuff); runCount = 1;
for (srcIndex = 1; srcIndex inLen; srcIndex++) {
this = *(++inBuff);
if (this == last) {
runCount++; /* it encodes */
if (runCount == 63) {
if (!(i=encput(last, runCount, fp)))
return(0);
total += i;
runCount = 0;
}
}
else { /* this != last */
if (runCount) {
if (!(i=encput(last, runCount, fp)))
return(0);
total += i;
}
last = this;
runCount = 1;
}
} /* endloop */
if (runCount) { /* finish up */
if (!(i=encput(last, runCount, fp)))
return(0);
return(total + i);
}
return(total);
}
/* subroutine for writing an encoded byte pair
(or single byte if it doesn't encode) to a file */
encput(byt, cnt, fid) /* returns count of bytes written, 0 if err */
unsigned char byt, cnt;
FILE *fid;
{
if(cnt) {
if( (cnt==1) && (0xc0 != (0xc0&byt)) ) {
if(EOF == putc((int)byt, fid))
return(0); /* disk write error (probably full) */
return(1);
}
else {
if(EOF == putc((int)0xC0 | cnt, fid))
return(0); /* disk write error */
if(EOF == putc((int)byt, fid))
return(0); /* disk write error */
return(2);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -