📄 d1r4.frm
字号:
VERSION 5.00
Begin VB.Form Form1
Caption = "Form1"
ClientHeight = 6195
ClientLeft = 60
ClientTop = 345
ClientWidth = 4680
LinkTopic = "Form1"
ScaleHeight = 6195
ScaleWidth = 4680
StartUpPosition = 3 'Windows Default
Begin VB.CommandButton Command1
Caption = "Command1"
Height = 375
Left = 3000
TabIndex = 0
Top = 5400
Width = 1335
End
End
Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Private Sub Command1_Click()
'program D1R4
'Driver program for routine PENDAG
N = 7
Dim A(7), B(7), C(7), D(7), E(7), R(7), U(7), A1(7, 7), X(7)
'输入已知的方程组的系数矩阵
For I = 1 To N
For J = 1 To N
A1(I, J) = 0
Next J
Next I
A1(1, 1) = 4: A1(1, 2) = 1: A1(1, 3) = 1
A1(2, 1) = 1: A1(2, 2) = 5: A1(2, 3) = 2: A1(2, 4) = 2
A1(3, 1) = 1: A1(3, 2) = 2: A1(3, 3) = 6: A1(3, 4) = 3: A1(3, 5) = 3
A1(4, 2) = 2: A1(4, 3) = 3: A1(4, 4) = 7: A1(4, 5) = 4: A1(4, 6) = 4
A1(5, 3) = 3: A1(5, 4) = 4: A1(5, 5) = 8: A1(5, 6) = 5: A1(5, 7) = 5
A1(6, 4) = 4: A1(6, 5) = 5: A1(6, 6) = 9: A1(6, 7) = 6
A1(7, 5) = 5: A1(7, 6) = 6: A1(7, 7) = 10
'输入已知的方程组的右端向量
R(1) = 1
R(2) = 2
R(3) = 3
R(4) = 4
R(5) = 5
R(6) = 6
R(7) = 7
Print
Print Tab(5); "已知的方程组的右端向量"
Print Tab(14); Format$(R(1), "#.##")
Print Tab(14); Format$(R(2), "#.##")
Print Tab(14); Format$(R(3), "#.##")
Print Tab(14); Format$(R(4), "#.##")
Print Tab(14); Format$(R(5), "#.##")
Print Tab(14); Format$(R(6), "#.##")
Print Tab(14); Format$(R(7), "#.##")
For I = 3 To N
A(I) = A1(I, I - 2)
Next I
For I = 2 To N
B(I) = A1(I, I - 1)
Next I
For I = 1 To N - 1
D(I) = A1(I, I + 1)
Next I
For I = 1 To N - 2
E(I) = A1(I, I + 2)
Next I
For I = 1 To N
C(I) = A1(I, I)
Next I
Call PENDAG(A(), B(), C(), D(), E(), R(), U(), N)
Print
Print Tab(5); "计算出的方程组的解"
Print Tab(10); Format$(U(1), "#.####E+00")
Print Tab(10); Format$(U(2), "#.####E+00")
Print Tab(10); Format$(U(3), "#.####E+00")
Print Tab(10); Format$(U(4), "#.####E+00")
Print Tab(10); Format$(U(5), "#.####E+00")
Print Tab(10); Format$(U(6), "#.####E+00")
Print Tab(10); Format$(U(7), "#.####E+00")
'将计算出的解乘以系数矩阵,以验证计算结果正确
For L = 1 To N
X(L) = 0#
For J = 1 To N
X(L) = X(L) + A1(L, J) * U(J)
Next J
Next L
Print
Print Tab(5); "计算出的解乘以系数矩阵的结果"
Print Tab(14); Format$(X(1), "##.##")
Print Tab(14); Format$(X(2), "##.##")
Print Tab(14); Format$(X(3), "##.##")
Print Tab(14); Format$(X(4), "##.##")
Print Tab(14); Format$(X(5), "##.##")
Print Tab(14); Format$(X(6), "##.##")
Print Tab(14); Format$(X(7), "##.##")
End Sub
Sub PENDAG(A(), B(), C(), D(), E(), R(), U(), N)
Dim W(100), BETA(100), ALPHA(100), CG(100), H(100)
W(1) = C(1)
BETA(1) = 0#
BETA(2) = D(1) / W(1)
ALPHA(1) = 0#
ALPHA(2) = E(1) / W(1)
ALPHA(N) = 0#
ALPHA(N + 1) = 0#
For K = 2 To N
CG(K) = B(K) - A(K) * BETA(K - 1)
W(K) = C(K) - A(K) * ALPHA(K - 1) - CG(K) * BETA(K)
If W(K) = 0# Then Print " W(K)=0.0 in PENDAG"
BETA(K + 1) = (D(K) - CG(K) * ALPHA(K)) / W(K)
ALPHA(K + 1) = E(K) / W(K)
Next K
H(1) = 0#
H(2) = R(1) / W(1)
For K = 2 To N
H(K + 1) = (R(K) - A(K) * H(K - 1) - CG(K) * H(K)) / W(K)
Next K
U(N) = H(N + 1)
U(N - 1) = H(N) - BETA(N) * U(N)
For K = N - 2 To 1 Step -1
U(K) = H(K + 1) - BETA(K + 1) * U(K + 1) - ALPHA(K + 1) * U(K + 2)
Next K
End Sub
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -