📄 jquant2.c
字号:
if (c0max > c0min) for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c0min = c0min = c0; goto have_c0min; } } have_c0min: if (c0max > c0min) for (c0 = c0max; c0 >= c0min; c0--) for (c1 = c1min; c1 <= c1max; c1++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c0max = c0max = c0; goto have_c0max; } } have_c0max: if (c1max > c1min) for (c1 = c1min; c1 <= c1max; c1++) for (c0 = c0min; c0 <= c0max; c0++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c1min = c1min = c1; goto have_c1min; } } have_c1min: if (c1max > c1min) for (c1 = c1max; c1 >= c1min; c1--) for (c0 = c0min; c0 <= c0max; c0++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c1max = c1max = c1; goto have_c1max; } } have_c1max: if (c2max > c2min) for (c2 = c2min; c2 <= c2max; c2++) for (c0 = c0min; c0 <= c0max; c0++) { histp = & histogram[c0][c1min][c2]; for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) if (*histp != 0) { boxp->c2min = c2min = c2; goto have_c2min; } } have_c2min: if (c2max > c2min) for (c2 = c2max; c2 >= c2min; c2--) for (c0 = c0min; c0 <= c0max; c0++) { histp = & histogram[c0][c1min][c2]; for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) if (*histp != 0) { boxp->c2max = c2max = c2; goto have_c2max; } } have_c2max: /* Update box volume. * We use 2-norm rather than real volume here; this biases the method * against making long narrow boxes, and it has the side benefit that * a box is splittable iff norm > 0. * Since the differences are expressed in histogram-cell units, * we have to shift back to JSAMPLE units to get consistent distances; * after which, we scale according to the selected distance scale factors. */ dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; /* Now scan remaining volume of box and compute population */ ccount = 0; for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++, histp++) if (*histp != 0) { ccount++; } } boxp->colorcount = ccount;}LOCAL(int)median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, int desired_colors)/* Repeatedly select and split the largest box until we have enough boxes */{ int n,lb; int c0,c1,c2,cmax; register boxptr b1,b2; while (numboxes < desired_colors) { /* Select box to split. * Current algorithm: by population for first half, then by volume. */ if (numboxes*2 <= desired_colors) { b1 = find_biggest_color_pop(boxlist, numboxes); } else { b1 = find_biggest_volume(boxlist, numboxes); } if (b1 == NULL) /* no splittable boxes left! */ break; b2 = &boxlist[numboxes]; /* where new box will go */ /* Copy the color bounds to the new box. */ b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; /* Choose which axis to split the box on. * Current algorithm: longest scaled axis. * See notes in update_box about scaling distances. */ c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; /* We want to break any ties in favor of green, then red, blue last. * This code does the right thing for R,G,B or B,G,R color orders only. */#if RGB_RED == 0 cmax = c1; n = 1; if (c0 > cmax) { cmax = c0; n = 0; } if (c2 > cmax) { n = 2; }#else cmax = c1; n = 1; if (c2 > cmax) { cmax = c2; n = 2; } if (c0 > cmax) { n = 0; }#endif /* Choose split point along selected axis, and update box bounds. * Current algorithm: split at halfway point. * (Since the box has been shrunk to minimum volume, * any split will produce two nonempty subboxes.) * Note that lb value is max for lower box, so must be < old max. */ switch (n) { case 0: lb = (b1->c0max + b1->c0min) / 2; b1->c0max = lb; b2->c0min = lb+1; break; case 1: lb = (b1->c1max + b1->c1min) / 2; b1->c1max = lb; b2->c1min = lb+1; break; case 2: lb = (b1->c2max + b1->c2min) / 2; b1->c2max = lb; b2->c2min = lb+1; break; } /* Update stats for boxes */ update_box(cinfo, b1); update_box(cinfo, b2); numboxes++; } return numboxes;}LOCAL(void)compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)/* Compute representative color for a box, put it in colormap[icolor] */{ /* Current algorithm: mean weighted by pixels (not colors) */ /* Note it is important to get the rounding correct! */ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; hist3d histogram = cquantize->histogram; histptr histp; int c0,c1,c2; int c0min,c0max,c1min,c1max,c2min,c2max; long count; long total = 0; long c0total = 0; long c1total = 0; long c2total = 0; c0min = boxp->c0min; c0max = boxp->c0max; c1min = boxp->c1min; c1max = boxp->c1max; c2min = boxp->c2min; c2max = boxp->c2max; for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) { if ((count = *histp++) != 0) { total += count; c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; } } } cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);}LOCAL(void)select_colors (j_decompress_ptr cinfo, int desired_colors)/* Master routine for color selection */{ boxptr boxlist; int numboxes; int i; /* Allocate workspace for box list */ boxlist = (boxptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box)); /* Initialize one box containing whole space */ numboxes = 1; boxlist[0].c0min = 0; boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; boxlist[0].c1min = 0; boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; boxlist[0].c2min = 0; boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; /* Shrink it to actually-used volume and set its statistics */ update_box(cinfo, & boxlist[0]); /* Perform median-cut to produce final box list */ numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); /* Compute the representative color for each box, fill colormap */ for (i = 0; i < numboxes; i++) compute_color(cinfo, & boxlist[i], i); cinfo->actual_number_of_colors = numboxes; TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);}/* * These routines are concerned with the time-critical task of mapping input * colors to the nearest color in the selected colormap. * * We re-use the histogram space as an "inverse color map", essentially a * cache for the results of nearest-color searches. All colors within a * histogram cell will be mapped to the same colormap entry, namely the one * closest to the cell's center. This may not be quite the closest entry to * the actual input color, but it's almost as good. A zero in the cache * indicates we haven't found the nearest color for that cell yet; the array * is cleared to zeroes before starting the mapping pass. When we find the * nearest color for a cell, its colormap index plus one is recorded in the * cache for future use. The pass2 scanning routines call fill_inverse_cmap * when they need to use an unfilled entry in the cache. * * Our method of efficiently finding nearest colors is based on the "locally * sorted search" idea described by Heckbert and on the incremental distance * calculation described by Spencer W. Thomas in chapter III.1 of Graphics * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that * the distances from a given colormap entry to each cell of the histogram can * be computed quickly using an incremental method: the differences between * distances to adjacent cells themselves differ by a constant. This allows a * fairly fast implementation of the "brute force" approach of computing the * distance from every colormap entry to every histogram cell. Unfortunately, * it needs a work array to hold the best-distance-so-far for each histogram * cell (because the inner loop has to be over cells, not colormap entries). * The work array elements have to be INT32s, so the work array would need * 256Kb at our recommended precision. This is not feasible in DOS machines. * * To get around these problems, we apply Thomas' method to compute the * nearest colors for only the cells within a small subbox of the histogram. * The work array need be only as big as the subbox, so the memory usage * problem is solved. Furthermore, we need not fill subboxes that are never * referenced in pass2; many images use only part of the color gamut, so a * fair amount of work is saved. An additional advantage of this * approach is that we can apply Heckbert's locality criterion to quickly * eliminate colormap entries that are far away from the subbox; typically * three-fourths of the colormap entries are rejected by Heckbert's criterion, * and we need not compute their distances to individual cells in the subbox. * The speed of this approach is heavily influenced by the subbox size: too * small means too much overhead, too big loses because Heckbert's criterion * can't eliminate as many colormap entries. Empirically the best subbox * size seems to be about 1/512th of the histogram (1/8th in each direction). * * Thomas' article also describes a refined method which is asymptotically * faster than the brute-force method, but it is also far more complex and * cannot efficiently be applied to small subboxes. It is therefore not * useful for programs intended to be portable to DOS machines. On machines * with plenty of memory, filling the whole histogram in one shot with Thomas' * refined method might be faster than the present code --- but then again, * it might not be any faster, and it's certainly more complicated. *//* log2(histogram cells in update box) for each axis; this can be adjusted */#define BOX_C0_LOG (HIST_C0_BITS-3)#define BOX_C1_LOG (HIST_C1_BITS-3)#define BOX_C2_LOG (HIST_C2_BITS-3)#define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */#define BOX_C1_ELEMS (1<<BOX_C1_LOG)#define BOX_C2_ELEMS (1<<BOX_C2_LOG)#define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)#define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)#define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)/* * The next three routines implement inverse colormap filling. They could * all be folded into one big routine, but splitting them up this way saves * some stack space (the mindist[] and bestdist[] arrays need not coexist) * and may allow some compilers to produce better code by registerizing more * inner-loop variables. */LOCAL(int)find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, JSAMPLE colorlist[])/* Locate the colormap entries close enough to an update box to be candidates * for the nearest entry to some cell(s) in the update box. The update box * is specified by the center coordinates of its first cell. The number of * candidate colormap entries is returned, and their colormap indexes are * placed in colorlist[]. * This routine uses Heckbert's "locally sorted search" criterion to select * the colors that need further consideration. */{
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -