📄 jquant2.c
字号:
/* * jquant2.c * * Copyright (C) 1991-1996, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains 2-pass color quantization (color mapping) routines. * These routines provide selection of a custom color map for an image, * followed by mapping of the image to that color map, with optional * Floyd-Steinberg dithering. * It is also possible to use just the second pass to map to an arbitrary * externally-given color map. * * Note: ordered dithering is not supported, since there isn't any fast * way to compute intercolor distances; it's unclear that ordered dither's * fundamental assumptions even hold with an irregularly spaced color map. */#define JPEG_INTERNALS#include "jinclude.h"#include "jpeglib.h"#ifdef QUANT_2PASS_SUPPORTED/* * This module implements the well-known Heckbert paradigm for color * quantization. Most of the ideas used here can be traced back to * Heckbert's seminal paper * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. * * In the first pass over the image, we accumulate a histogram showing the * usage count of each possible color. To keep the histogram to a reasonable * size, we reduce the precision of the input; typical practice is to retain * 5 or 6 bits per color, so that 8 or 4 different input values are counted * in the same histogram cell. * * Next, the color-selection step begins with a box representing the whole * color space, and repeatedly splits the "largest" remaining box until we * have as many boxes as desired colors. Then the mean color in each * remaining box becomes one of the possible output colors. * * The second pass over the image maps each input pixel to the closest output * color (optionally after applying a Floyd-Steinberg dithering correction). * This mapping is logically trivial, but making it go fast enough requires * considerable care. * * Heckbert-style quantizers vary a good deal in their policies for choosing * the "largest" box and deciding where to cut it. The particular policies * used here have proved out well in experimental comparisons, but better ones * may yet be found. * * In earlier versions of the IJG code, this module quantized in YCbCr color * space, processing the raw upsampled data without a color conversion step. * This allowed the color conversion math to be done only once per colormap * entry, not once per pixel. However, that optimization precluded other * useful optimizations (such as merging color conversion with upsampling) * and it also interfered with desired capabilities such as quantizing to an * externally-supplied colormap. We have therefore abandoned that approach. * The present code works in the post-conversion color space, typically RGB. * * To improve the visual quality of the results, we actually work in scaled * RGB space, giving G distances more weight than R, and R in turn more than * B. To do everything in integer math, we must use integer scale factors. * The 2/3/1 scale factors used here correspond loosely to the relative * weights of the colors in the NTSC grayscale equation. * If you want to use this code to quantize a non-RGB color space, you'll * probably need to change these scale factors. */#define R_SCALE 2 /* scale R distances by this much */#define G_SCALE 3 /* scale G distances by this much */#define B_SCALE 1 /* and B by this much *//* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B * and B,G,R orders. If you define some other weird order in jmorecfg.h, * you'll get compile errors until you extend this logic. In that case * you'll probably want to tweak the histogram sizes too. */#if RGB_RED == 0#define C0_SCALE R_SCALE#endif#if RGB_BLUE == 0#define C0_SCALE B_SCALE#endif#if RGB_GREEN == 1#define C1_SCALE G_SCALE#endif#if RGB_RED == 2#define C2_SCALE R_SCALE#endif#if RGB_BLUE == 2#define C2_SCALE B_SCALE#endif/* * First we have the histogram data structure and routines for creating it. * * The number of bits of precision can be adjusted by changing these symbols. * We recommend keeping 6 bits for G and 5 each for R and B. * If you have plenty of memory and cycles, 6 bits all around gives marginally * better results; if you are short of memory, 5 bits all around will save * some space but degrade the results. * To maintain a fully accurate histogram, we'd need to allocate a "long" * (preferably unsigned long) for each cell. In practice this is overkill; * we can get by with 16 bits per cell. Few of the cell counts will overflow, * and clamping those that do overflow to the maximum value will give close- * enough results. This reduces the recommended histogram size from 256Kb * to 128Kb, which is a useful savings on PC-class machines. * (In the second pass the histogram space is re-used for pixel mapping data; * in that capacity, each cell must be able to store zero to the number of * desired colors. 16 bits/cell is plenty for that too.) * Since the JPEG code is intended to run in small memory model on 80x86 * machines, we can't just allocate the histogram in one chunk. Instead * of a true 3-D array, we use a row of pointers to 2-D arrays. Each * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that * on 80x86 machines, the pointer row is in near memory but the actual * arrays are in far memory (same arrangement as we use for image arrays). */#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap *//* These will do the right thing for either R,G,B or B,G,R color order, * but you may not like the results for other color orders. */#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */#define HIST_C1_BITS 6 /* bits of precision in G histogram */#define HIST_C2_BITS 5 /* bits of precision in B/R histogram *//* Number of elements along histogram axes. */#define HIST_C0_ELEMS (1<<HIST_C0_BITS)#define HIST_C1_ELEMS (1<<HIST_C1_BITS)#define HIST_C2_ELEMS (1<<HIST_C2_BITS)/* These are the amounts to shift an input value to get a histogram index. */#define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)#define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */typedef histcell FAR * histptr; /* for pointers to histogram cells */typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */typedef hist2d * hist3d; /* type for top-level pointer *//* Declarations for Floyd-Steinberg dithering. * * Errors are accumulated into the array fserrors[], at a resolution of * 1/16th of a pixel count. The error at a given pixel is propagated * to its not-yet-processed neighbors using the standard F-S fractions, * ... (here) 7/16 * 3/16 5/16 1/16 * We work left-to-right on even rows, right-to-left on odd rows. * * We can get away with a single array (holding one row's worth of errors) * by using it to store the current row's errors at pixel columns not yet * processed, but the next row's errors at columns already processed. We * need only a few extra variables to hold the errors immediately around the * current column. (If we are lucky, those variables are in registers, but * even if not, they're probably cheaper to access than array elements are.) * * The fserrors[] array has (#columns + 2) entries; the extra entry at * each end saves us from special-casing the first and last pixels. * Each entry is three values long, one value for each color component. * * Note: on a wide image, we might not have enough room in a PC's near data * segment to hold the error array; so it is allocated with alloc_large. */#if BITS_IN_JSAMPLE == 8typedef INT16 FSERROR; /* 16 bits should be enough */typedef int LOCFSERROR; /* use 'int' for calculation temps */#elsetypedef INT32 FSERROR; /* may need more than 16 bits */typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */#endiftypedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) *//* Private subobject */typedef struct { struct jpeg_color_quantizer pub; /* public fields */ /* Space for the eventually created colormap is stashed here */ JSAMPARRAY sv_colormap; /* colormap allocated at init time */ int desired; /* desired # of colors = size of colormap */ /* Variables for accumulating image statistics */ hist3d histogram; /* pointer to the histogram */ boolean needs_zeroed; /* TRUE if next pass must zero histogram */ /* Variables for Floyd-Steinberg dithering */ FSERRPTR fserrors; /* accumulated errors */ boolean on_odd_row; /* flag to remember which row we are on */ int * error_limiter; /* table for clamping the applied error */} my_cquantizer;typedef my_cquantizer * my_cquantize_ptr;/* * Prescan some rows of pixels. * In this module the prescan simply updates the histogram, which has been * initialized to zeroes by start_pass. * An output_buf parameter is required by the method signature, but no data * is actually output (in fact the buffer controller is probably passing a * NULL pointer). */METHODDEF(void)prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows){ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; register JSAMPROW ptr; register histptr histp; register hist3d histogram = cquantize->histogram; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; for (row = 0; row < num_rows; row++) { ptr = input_buf[row]; for (col = width; col > 0; col--) { /* get pixel value and index into the histogram */ histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] [GETJSAMPLE(ptr[1]) >> C1_SHIFT] [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; /* increment, check for overflow and undo increment if so. */ if (++(*histp) <= 0) (*histp)--; ptr += 3; } }}/* * Next we have the really interesting routines: selection of a colormap * given the completed histogram. * These routines work with a list of "boxes", each representing a rectangular * subset of the input color space (to histogram precision). */typedef struct { /* The bounds of the box (inclusive); expressed as histogram indexes */ int c0min, c0max; int c1min, c1max; int c2min, c2max; /* The volume (actually 2-norm) of the box */ INT32 volume; /* The number of nonzero histogram cells within this box */ long colorcount;} box;typedef box * boxptr;LOCAL(boxptr)find_biggest_color_pop (boxptr boxlist, int numboxes)/* Find the splittable box with the largest color population *//* Returns NULL if no splittable boxes remain */{ register boxptr boxp; register int i; register long maxc = 0; boxptr which = NULL; for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { if (boxp->colorcount > maxc && boxp->volume > 0) { which = boxp; maxc = boxp->colorcount; } } return which;}LOCAL(boxptr)find_biggest_volume (boxptr boxlist, int numboxes)/* Find the splittable box with the largest (scaled) volume *//* Returns NULL if no splittable boxes remain */{ register boxptr boxp; register int i; register INT32 maxv = 0; boxptr which = NULL; for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { if (boxp->volume > maxv) { which = boxp; maxv = boxp->volume; } } return which;}LOCAL(void)update_box (j_decompress_ptr cinfo, boxptr boxp)/* Shrink the min/max bounds of a box to enclose only nonzero elements, *//* and recompute its volume and population */{ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; hist3d histogram = cquantize->histogram; histptr histp; int c0,c1,c2; int c0min,c0max,c1min,c1max,c2min,c2max; INT32 dist0,dist1,dist2; long ccount; c0min = boxp->c0min; c0max = boxp->c0max; c1min = boxp->c1min; c1max = boxp->c1max; c2min = boxp->c2min; c2max = boxp->c2max;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -