⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jidctred.c

📁 linux下的flash播放器源程序
💻 C
字号:
/* * jidctred.c * * Copyright (C) 1994-1998, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains inverse-DCT routines that produce reduced-size output: * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block. * * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M) * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step * with an 8-to-4 step that produces the four averages of two adjacent outputs * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output). * These steps were derived by computing the corresponding values at the end * of the normal LL&M code, then simplifying as much as possible. * * 1x1 is trivial: just take the DC coefficient divided by 8. * * See jidctint.c for additional comments. */#define JPEG_INTERNALS#include "jinclude.h"#include "jpeglib.h"#include "jdct.h"		/* Private declarations for DCT subsystem */#ifdef IDCT_SCALING_SUPPORTED/* * This module is specialized to the case DCTSIZE = 8. */#if DCTSIZE != 8  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */#endif/* Scaling is the same as in jidctint.c. */#if BITS_IN_JSAMPLE == 8#define CONST_BITS  13#define PASS1_BITS  2#else#define CONST_BITS  13#define PASS1_BITS  1		/* lose a little precision to avoid overflow */#endif/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */#if CONST_BITS == 13#define FIX_0_211164243  ((INT32)  1730)	/* FIX(0.211164243) */#define FIX_0_509795579  ((INT32)  4176)	/* FIX(0.509795579) */#define FIX_0_601344887  ((INT32)  4926)	/* FIX(0.601344887) */#define FIX_0_720959822  ((INT32)  5906)	/* FIX(0.720959822) */#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */#define FIX_0_850430095  ((INT32)  6967)	/* FIX(0.850430095) */#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */#define FIX_1_061594337  ((INT32)  8697)	/* FIX(1.061594337) */#define FIX_1_272758580  ((INT32)  10426)	/* FIX(1.272758580) */#define FIX_1_451774981  ((INT32)  11893)	/* FIX(1.451774981) */#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */#define FIX_2_172734803  ((INT32)  17799)	/* FIX(2.172734803) */#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */#define FIX_3_624509785  ((INT32)  29692)	/* FIX(3.624509785) */#else#define FIX_0_211164243  FIX(0.211164243)#define FIX_0_509795579  FIX(0.509795579)#define FIX_0_601344887  FIX(0.601344887)#define FIX_0_720959822  FIX(0.720959822)#define FIX_0_765366865  FIX(0.765366865)#define FIX_0_850430095  FIX(0.850430095)#define FIX_0_899976223  FIX(0.899976223)#define FIX_1_061594337  FIX(1.061594337)#define FIX_1_272758580  FIX(1.272758580)#define FIX_1_451774981  FIX(1.451774981)#define FIX_1_847759065  FIX(1.847759065)#define FIX_2_172734803  FIX(2.172734803)#define FIX_2_562915447  FIX(2.562915447)#define FIX_3_624509785  FIX(3.624509785)#endif/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */#if BITS_IN_JSAMPLE == 8#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)#else#define MULTIPLY(var,const)  ((var) * (const))#endif/* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce an int result.  In this module, both inputs and result * are 16 bits or less, so either int or short multiply will work. */#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))/* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 4x4 output block. */GLOBAL(void)jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,	       JCOEFPTR coef_block,	       JSAMPARRAY output_buf, JDIMENSION output_col){  INT32 tmp0, tmp2, tmp10, tmp12;  INT32 z1, z2, z3, z4;  JCOEFPTR inptr;  ISLOW_MULT_TYPE * quantptr;  int * wsptr;  JSAMPROW outptr;  JSAMPLE *range_limit = IDCT_range_limit(cinfo);  int ctr;  int workspace[DCTSIZE*4];	/* buffers data between passes */  SHIFT_TEMPS  /* Pass 1: process columns from input, store into work array. */  inptr = coef_block;  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;  wsptr = workspace;  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {    /* Don't bother to process column 4, because second pass won't use it */    if (ctr == DCTSIZE-4)      continue;    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&	inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {      /* AC terms all zero; we need not examine term 4 for 4x4 output */      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;            wsptr[DCTSIZE*0] = dcval;      wsptr[DCTSIZE*1] = dcval;      wsptr[DCTSIZE*2] = dcval;      wsptr[DCTSIZE*3] = dcval;            continue;    }        /* Even part */        tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);    tmp0 <<= (CONST_BITS+1);        z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);    tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);        tmp10 = tmp0 + tmp2;    tmp12 = tmp0 - tmp2;        /* Odd part */        z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);    z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);    z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);    z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);        tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */        tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */    /* Final output stage */        wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);    wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);    wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);  }    /* Pass 2: process 4 rows from work array, store into output array. */  wsptr = workspace;  for (ctr = 0; ctr < 4; ctr++) {    outptr = output_buf[ctr] + output_col;    /* It's not clear whether a zero row test is worthwhile here ... */#ifndef NO_ZERO_ROW_TEST    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {      /* AC terms all zero */      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)				  & RANGE_MASK];            outptr[0] = dcval;      outptr[1] = dcval;      outptr[2] = dcval;      outptr[3] = dcval;            wsptr += DCTSIZE;		/* advance pointer to next row */      continue;    }#endif        /* Even part */        tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);        tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)	 + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);        tmp10 = tmp0 + tmp2;    tmp12 = tmp0 - tmp2;        /* Odd part */        z1 = (INT32) wsptr[7];    z2 = (INT32) wsptr[5];    z3 = (INT32) wsptr[3];    z4 = (INT32) wsptr[1];        tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */        tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */    /* Final output stage */        outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,					  CONST_BITS+PASS1_BITS+3+1)			    & RANGE_MASK];    outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,					  CONST_BITS+PASS1_BITS+3+1)			    & RANGE_MASK];    outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,					  CONST_BITS+PASS1_BITS+3+1)			    & RANGE_MASK];    outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,					  CONST_BITS+PASS1_BITS+3+1)			    & RANGE_MASK];        wsptr += DCTSIZE;		/* advance pointer to next row */  }}/* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 2x2 output block. */GLOBAL(void)jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,	       JCOEFPTR coef_block,	       JSAMPARRAY output_buf, JDIMENSION output_col){  INT32 tmp0, tmp10, z1;  JCOEFPTR inptr;  ISLOW_MULT_TYPE * quantptr;  int * wsptr;  JSAMPROW outptr;  JSAMPLE *range_limit = IDCT_range_limit(cinfo);  int ctr;  int workspace[DCTSIZE*2];	/* buffers data between passes */  SHIFT_TEMPS  /* Pass 1: process columns from input, store into work array. */  inptr = coef_block;  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;  wsptr = workspace;  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {    /* Don't bother to process columns 2,4,6 */    if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)      continue;    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {      /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;            wsptr[DCTSIZE*0] = dcval;      wsptr[DCTSIZE*1] = dcval;            continue;    }        /* Even part */        z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);    tmp10 = z1 << (CONST_BITS+2);        /* Odd part */    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);    tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */    z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);    tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */    z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);    tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */    z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);    tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */    /* Final output stage */        wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);    wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);  }    /* Pass 2: process 2 rows from work array, store into output array. */  wsptr = workspace;  for (ctr = 0; ctr < 2; ctr++) {    outptr = output_buf[ctr] + output_col;    /* It's not clear whether a zero row test is worthwhile here ... */#ifndef NO_ZERO_ROW_TEST    if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {      /* AC terms all zero */      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)				  & RANGE_MASK];            outptr[0] = dcval;      outptr[1] = dcval;            wsptr += DCTSIZE;		/* advance pointer to next row */      continue;    }#endif        /* Even part */        tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);        /* Odd part */    tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */	 + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */	 + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */	 + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */    /* Final output stage */        outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,					  CONST_BITS+PASS1_BITS+3+2)			    & RANGE_MASK];    outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,					  CONST_BITS+PASS1_BITS+3+2)			    & RANGE_MASK];        wsptr += DCTSIZE;		/* advance pointer to next row */  }}/* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 1x1 output block. */GLOBAL(void)jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,	       JCOEFPTR coef_block,	       JSAMPARRAY output_buf, JDIMENSION output_col){  int dcval;  ISLOW_MULT_TYPE * quantptr;  JSAMPLE *range_limit = IDCT_range_limit(cinfo);  SHIFT_TEMPS  /* We hardly need an inverse DCT routine for this: just take the   * average pixel value, which is one-eighth of the DC coefficient.   */  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;  dcval = DEQUANTIZE(coef_block[0], quantptr[0]);  dcval = (int) DESCALE((INT32) dcval, 3);  output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];}#endif /* IDCT_SCALING_SUPPORTED */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -